BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17417885)

  • 1. Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer.
    Dawn A; Mukherjee P; Nandi AK
    Langmuir; 2007 May; 23(10):5231-7. PubMed ID: 17417885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimetallic Au(core)-Ag(shell) nanoparticles from interfacial redox process using poly(o-methoxyaniline).
    Mukherjee P; Nandi AK
    J Colloid Interface Sci; 2010 Apr; 344(1):30-6. PubMed ID: 20067848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-poly(o-methoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: physical and electronic properties.
    Routh P; Mukherjee P; Nandi AK
    Langmuir; 2010 Apr; 26(7):5093-100. PubMed ID: 20020756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: a novel nano-biocomposite.
    Dawn A; Nandi AK
    J Phys Chem B; 2006 Sep; 110(37):18291-8. PubMed ID: 16970449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of different shape Au nanoparticles through an interfacial redox process using a conducting polymer.
    Mukherjee P; Nandi AK
    Langmuir; 2010 Feb; 26(4):2785-90. PubMed ID: 19891467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple method for the preparation of DNA-poly(o-methoxyaniline) hybrid: structure, morphology, and uncoiling of poly(o-methoxyaniline) on the DNA surface.
    Dawn A; Nandi AK
    Langmuir; 2006 Mar; 22(7):3273-9. PubMed ID: 16548588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecular hybrid of a conducting polymer with DNA: morphology, structure, and doping behavior.
    Dawn A; Nandi AK
    Macromol Biosci; 2005 May; 5(5):441-50. PubMed ID: 15889390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self assembly of poly(o-methoxy aniline) with RNA and RNA/DNA hybrids: physical properties and conformational change of poly(o-methoxy aniline).
    Routh P; Mukherjee P; Dawn A; Nandi AK
    Biophys Chem; 2009 Aug; 143(3):145-53. PubMed ID: 19482408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of silver-poly(vinylidene fluoride) nanocomposites: formation of piezoelectric polymorph of poly(vinylidene fluoride).
    Manna S; Batabyal SK; Nandi AK
    J Phys Chem B; 2006 Jun; 110(25):12318-26. PubMed ID: 16800554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of block copolymer-stabilized Au-Ag alloy nanoparticles and fabrication of poly(methyl methacrylate)/Au-Ag nanocomposite film.
    Chatterjee U; Jewrajka SK
    J Colloid Interface Sci; 2007 Sep; 313(2):717-23. PubMed ID: 17574566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependence of nucleation and growth of silver nanoparticles generated by sugar reduction in micellar media.
    Mehta SK; Chaudhary S; Gradzielski M
    J Colloid Interface Sci; 2010 Mar; 343(2):447-53. PubMed ID: 20022336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition.
    Chan SC; Barteau MA
    Langmuir; 2005 Jun; 21(12):5588-95. PubMed ID: 15924494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced resonance Raman scattering of polyaniline on silver and gold colloids.
    Izumi CM; Andrade GF; Temperini ML
    J Phys Chem B; 2008 Dec; 112(51):16334-40. PubMed ID: 19368009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone).
    Haas I; Shanmugam S; Gedanken A
    J Phys Chem B; 2006 Aug; 110(34):16947-52. PubMed ID: 16927986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of silver nanoparticles and nanocraters on silicon wafers.
    He J; Kunitake T
    Langmuir; 2006 Aug; 22(18):7881-4. PubMed ID: 16922578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles.
    Li XG; Li J; Huang MR
    Chemistry; 2009 Jun; 15(26):6446-55. PubMed ID: 19466721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle infiltration to prepare solvent-free controlled drug delivery systems.
    Rodríguez-Cruz IM; Domínguez-Delgado CL; Escobar-Chávez JJ; Leyva-Gómez G; Ganem-Quintanar A; Quintanar-Guerrero D
    Int J Pharm; 2009 Apr; 371(1-2):177-81. PubMed ID: 19150491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media.
    Prathap Chandran S; Ghatak J; Satyam PV; Sastry M
    J Colloid Interface Sci; 2007 Aug; 312(2):498-505. PubMed ID: 17434179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure.
    Smirnova TN; Kokhtych LM; Kutsenko AS; Sakhno OV; Stumpe J
    Nanotechnology; 2009 Oct; 20(40):405301. PubMed ID: 19752504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.