These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 17417935)

  • 1. Fundamental components of attention.
    Knudsen EI
    Annu Rev Neurosci; 2007; 30():57-78. PubMed ID: 17417935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Working memory for order information: multiple cognitive and neural mechanisms.
    Marshuetz C; Smith EE
    Neuroscience; 2006 Apr; 139(1):195-200. PubMed ID: 16359810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional neuroanatomy of working memory: contributions of human brain lesion studies.
    Müller NG; Knight RT
    Neuroscience; 2006 Apr; 139(1):51-8. PubMed ID: 16352402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices.
    Buschman TJ; Miller EK
    Science; 2007 Mar; 315(5820):1860-2. PubMed ID: 17395832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attention, short-term memory, and action selection: a unifying theory.
    Deco G; Rolls ET
    Prog Neurobiol; 2005 Jul; 76(4):236-56. PubMed ID: 16257103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference.
    Liesefeld AM; Liesefeld HR; Zimmer HD
    Psychol Sci; 2014 Feb; 25(2):325-33. PubMed ID: 24379152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval.
    Ciaramelli E; Grady CL; Moscovitch M
    Neuropsychologia; 2008; 46(7):1828-51. PubMed ID: 18471837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remembering the time: a continuous clock.
    Lewis PA; Miall RC
    Trends Cogn Sci; 2006 Sep; 10(9):401-6. PubMed ID: 16899395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of prefrontal cortex for selective attention in a visual working memory task.
    Schreppel TJ; Pauli P; Ellgring H; Fallgatter AJ; Herrmann MJ
    Int J Neurosci; 2008 Dec; 118(12):1673-88. PubMed ID: 18937114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Top-down modulation: bridging selective attention and working memory.
    Gazzaley A; Nobre AC
    Trends Cogn Sci; 2012 Feb; 16(2):129-35. PubMed ID: 22209601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unity and diversity of tonic and phasic executive control components in episodic and working memory.
    Marklund P; Fransson P; Cabeza R; Larsson A; Ingvar M; Nyberg L
    Neuroimage; 2007 Jul; 36(4):1361-73. PubMed ID: 17524668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backward inhibition in a task of switching attention within verbal working memory.
    Bao M; Li ZH; Chen XC; Zhang DR
    Brain Res Bull; 2006 Mar; 69(2):214-21. PubMed ID: 16533672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interface between emotion and attention: a review of evidence from psychology and neuroscience.
    Compton RJ
    Behav Cogn Neurosci Rev; 2003 Jun; 2(2):115-29. PubMed ID: 13678519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How is cognitive control of a simple mental image achieved? An fMRI study.
    Koçak OM; Ciçek M; Yağmurlu B; Atbasoğlu C
    Int J Neurosci; 2008 Dec; 118(12):1781-96. PubMed ID: 18937119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural mechanisms of attention and control: losing our inhibitions?
    Nieuwenhuis S; Yeung N
    Nat Neurosci; 2005 Dec; 8(12):1631-3. PubMed ID: 16306886
    [No Abstract]   [Full Text] [Related]  

  • 19. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review.
    Criaud M; Boulinguez P
    Neurosci Biobehav Rev; 2013 Jan; 37(1):11-23. PubMed ID: 23164813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.