BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 17418140)

  • 1. The roles of organic anion permeases in aluminium resistance and mineral nutrition.
    Delhaize E; Gruber BD; Ryan PR
    FEBS Lett; 2007 May; 581(12):2255-62. PubMed ID: 17418140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils.
    Ryan PR; Tyerman SD; Sasaki T; Furuichi T; Yamamoto Y; Zhang WH; Delhaize E
    J Exp Bot; 2011 Jan; 62(1):9-20. PubMed ID: 20847099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 - an anion-selective transporter.
    Piñeros MA; Cançado GM; Maron LG; Lyi SM; Menossi M; Kochian LV
    Plant J; 2008 Jan; 53(2):352-67. PubMed ID: 18069943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.
    Ligaba A; Maron L; Shaff J; Kochian L; Piñeros M
    Plant Cell Environ; 2012 Jul; 35(7):1185-200. PubMed ID: 22211473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.
    Maron LG; Piñeros MA; Guimarães CT; Magalhaes JV; Pleiman JK; Mao C; Shaff J; Belicuas SN; Kochian LV
    Plant J; 2010 Mar; 61(5):728-40. PubMed ID: 20003133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: A review.
    Riaz M; Yan L; Wu X; Hussain S; Aziz O; Jiang C
    Ecotoxicol Environ Saf; 2018 Dec; 165():25-35. PubMed ID: 30173023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family.
    Magalhaes JV
    Ann Bot; 2010 Jul; 106(1):199-203. PubMed ID: 20511585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Process and mechanism of plants in overcoming acid soil aluminum stress].
    Zhao TL; Xie GN; Zhang XX; Qiu LQ; Wang N; Zhang SZ
    Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):3003-11. PubMed ID: 24483099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1.
    Ligaba A; Dreyer I; Margaryan A; Schneider DJ; Kochian L; Piñeros M
    Plant J; 2013 Dec; 76(5):766-80. PubMed ID: 24188189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular regulation of aluminum resistance and sulfur nutrition during root growth.
    Alarcón-Poblete E; Inostroza-Blancheteau C; Alberdi M; Rengel Z; Reyes-Díaz M
    Planta; 2018 Jan; 247(1):27-39. PubMed ID: 29119269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells.
    Ligaba A; Katsuhara M; Ryan PR; Shibasaka M; Matsumoto H
    Plant Physiol; 2006 Nov; 142(3):1294-303. PubMed ID: 17028155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1.
    Ryan PR; Raman H; Gupta S; Sasaki T; Yamamoto Y; Delhaize E
    Plant J; 2010 Nov; 64(3):446-55. PubMed ID: 20804458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide characterization, transcriptome profiling, and functional analysis of the ALMT gene family in Medicago for aluminum resistance.
    Jin D; Chen J; Kang Y; Yang F; Yu D; Liu X; Yan C; Guo Z; Zhang Y
    J Plant Physiol; 2024 Jun; 297():154262. PubMed ID: 38703548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.
    Sasaki T; Tsuchiya Y; Ariyoshi M; Ryan PR; Furuichi T; Yamamoto Y
    Plant Cell Physiol; 2014 Dec; 55(12):2126-38. PubMed ID: 25311199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Members of the Aluminum-Activated Malate Transporter Family, SlALMT4 and SlALMT5, are Expressed during Fruit Development, and the Overexpression of SlALMT5 Alters Organic Acid Contents in Seeds in Tomato (Solanum lycopersicum).
    Sasaki T; Tsuchiya Y; Ariyoshi M; Nakano R; Ushijima K; Kubo Y; Mori IC; Higashiizumi E; Galis I; Yamamoto Y
    Plant Cell Physiol; 2016 Nov; 57(11):2367-2379. PubMed ID: 27615796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.
    Liu J; Magalhaes JV; Shaff J; Kochian LV
    Plant J; 2009 Feb; 57(3):389-99. PubMed ID: 18826429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.
    Delhaize E; Taylor P; Hocking PJ; Simpson RJ; Ryan PR; Richardson AE
    Plant Biotechnol J; 2009 Jun; 7(5):391-400. PubMed ID: 19490502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.
    Ryan PR; Raman H; Gupta S; Horst WJ; Delhaize E
    Plant Physiol; 2009 Jan; 149(1):340-51. PubMed ID: 19005085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of transposable elements in the evolution of aluminium resistance in plants.
    Pereira JF; Ryan PR
    J Exp Bot; 2019 Jan; 70(1):41-54. PubMed ID: 30325439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants.
    Chauhan DK; Yadav V; Vaculík M; Gassmann W; Pike S; Arif N; Singh VP; Deshmukh R; Sahi S; Tripathi DK
    Crit Rev Biotechnol; 2021 Aug; 41(5):715-730. PubMed ID: 33866893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.