BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 17418480)

  • 41. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.
    Lu L; Yazdi H; Jin S; Zuo Y; Fallgren PH; Ren ZJ
    J Hazard Mater; 2014 Jun; 274():8-15. PubMed ID: 24762696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil.
    Stroud JL; Paton GI; Semple KT
    Chemosphere; 2009 Jan; 74(4):563-7. PubMed ID: 19012945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contaminated soil phytoremediation by Cyperus laxus Lam. cytochrome p450 EROD-activity induced by hydrocarbons in roots.
    López-Martínez S; Gallegos-Martínez ME; Pérez-Flores LJ; Gutiérrez-Rojas M
    Int J Phytoremediation; 2008; 10():289-301. PubMed ID: 19260214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation.
    Franzetti A; Di Gennaro P; Bestetti G; Lasagni M; Pitea D; Collina E
    J Hazard Mater; 2008 Apr; 152(3):1309-16. PubMed ID: 17850960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of toluene as gaseous cosubstrate in bioremediation of hydrocarbon-polluted soil.
    Ortiz I; Velasco A; Revah S
    J Hazard Mater; 2006 Apr; 131(1-3):112-7. PubMed ID: 16239067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the potential of biological treatment for arsenic contaminated soils and groundwater.
    Wang S; Zhao X
    J Environ Manage; 2009 Jun; 90(8):2367-76. PubMed ID: 19269736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.
    Owsianiak M; Szulc A; Chrzanowski Ł; Cyplik P; Bogacki M; Olejnik-Schmidt AK; Heipieper HJ
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):545-53. PubMed ID: 19471922
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms.
    Jeyalakshmi D; Kanmani S
    J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes.
    Tyagi M; da Fonseca MM; de Carvalho CC
    Biodegradation; 2011 Apr; 22(2):231-41. PubMed ID: 20680666
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct link between fluoranthene biodegradation and the mobility and sequestration of its residues during aging.
    Vessigaud S; Perrin-Ganier C; Belkessam L; Denys S; Schiavon M
    J Environ Qual; 2007; 36(5):1412-9. PubMed ID: 17766820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Bioremediation of soils and sediments polluted by polychlorinated biphenyls].
    Vasil'eva GK; Strizhakova ER
    Mikrobiologiia; 2007; 76(6):725-41. PubMed ID: 18297863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ex situ bioremediation of phenol contaminated soil using polymer beads.
    Prpich GP; Adams RL; Daugulis AJ
    Biotechnol Lett; 2006 Dec; 28(24):2027-31. PubMed ID: 17009089
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil.
    Cycoń M; Wójcik M; Piotrowska-Seget Z
    Chemosphere; 2009 Jul; 76(4):494-501. PubMed ID: 19356785
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments.
    Baek KH; Yoon BD; Kim BH; Cho DH; Lee IS; Oh HM; Kim HS
    J Microbiol Biotechnol; 2007 Jan; 17(1):67-73. PubMed ID: 18051355
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradation of 1,4-dioxane by a Flavobacterium.
    Sun B; Ko K; Ramsay JA
    Biodegradation; 2011 Jun; 22(3):651-9. PubMed ID: 21110067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial dehalogenation of polychlorinated biphenyls in aerobic conditions.
    Aráoz B; Viale AA
    Rev Argent Microbiol; 2004; 36(1):47-51. PubMed ID: 15174750
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ bioremediation of organochlorine-pesticide-contaminated microcosm soil and evaluation by gene probe.
    Qureshi A; Mohan M; Kanade GS; Kapley A; Purohit HJ
    Pest Manag Sci; 2009 Jul; 65(7):798-804. PubMed ID: 19360715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design of a new rotating drum bioreactor operated at atmospheric pressure on the bioremediation of a polluted soil.
    Rodríguez-Meza MA; Chávez-Gómez B; Poggi-Varaldo HM; Ríos-Leal E; Barrera-Cortés J
    Bioprocess Biosyst Eng; 2010 Jun; 33(5):573-82. PubMed ID: 19847461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.