These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 17418603)
1. Prediction of factor Xa inhibitors by machine learning methods. Lin HH; Han LY; Yap CW; Xue Y; Liu XH; Zhu F; Chen YZ J Mol Graph Model; 2007 Sep; 26(2):505-18. PubMed ID: 17418603 [TBL] [Abstract][Full Text] [Related]
2. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Lv W; Xue Y Eur J Med Chem; 2010 Mar; 45(3):1167-72. PubMed ID: 20053484 [TBL] [Abstract][Full Text] [Related]
3. Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods. Li H; Ung CY; Yap CW; Xue Y; Li ZR; Chen YZ J Mol Graph Model; 2006 Nov; 25(3):313-23. PubMed ID: 16497524 [TBL] [Abstract][Full Text] [Related]
4. Prediction of P-glycoprotein substrates by a support vector machine approach. Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858 [TBL] [Abstract][Full Text] [Related]
5. Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Xue Y; Li H; Ung CY; Yap CW; Chen YZ Chem Res Toxicol; 2006 Aug; 19(8):1030-9. PubMed ID: 16918241 [TBL] [Abstract][Full Text] [Related]
6. Prediction of antibacterial compounds by machine learning approaches. Yang XG; Chen D; Wang M; Xue Y; Chen YZ J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254 [TBL] [Abstract][Full Text] [Related]
7. Prediction of genotoxicity of chemical compounds by statistical learning methods. Li H; Ung CY; Yap CW; Xue Y; Li ZR; Cao ZW; Chen YZ Chem Res Toxicol; 2005 Jun; 18(6):1071-80. PubMed ID: 15962942 [TBL] [Abstract][Full Text] [Related]
8. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Vasanthanathan P; Taboureau O; Oostenbrink C; Vermeulen NP; Olsen L; Jørgensen FS Drug Metab Dispos; 2009 Mar; 37(3):658-64. PubMed ID: 19056915 [TBL] [Abstract][Full Text] [Related]
9. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. Li H; Yap CW; Ung CY; Xue Y; Cao ZW; Chen YZ J Chem Inf Model; 2005; 45(5):1376-84. PubMed ID: 16180914 [TBL] [Abstract][Full Text] [Related]
10. In silico prediction and screening of gamma-secretase inhibitors by molecular descriptors and machine learning methods. Yang XG; Lv W; Chen YZ; Xue Y J Comput Chem; 2010 Apr; 31(6):1249-58. PubMed ID: 19847781 [TBL] [Abstract][Full Text] [Related]
11. Prediction of chemical carcinogenicity by machine learning approaches. Tan NX; Rao HB; Li ZR; Li XY SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583 [TBL] [Abstract][Full Text] [Related]
12. Prediction of novel and selective TNF-alpha converting enzyme (TACE) inhibitors and characterization of correlative molecular descriptors by machine learning approaches. Cong Y; Yang XG; Lv W; Xue Y J Mol Graph Model; 2009 Oct; 28(3):236-44. PubMed ID: 19729328 [TBL] [Abstract][Full Text] [Related]
13. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. Xue Y; Li ZR; Yap CW; Sun LZ; Chen X; Chen YZ J Chem Inf Comput Sci; 2004; 44(5):1630-8. PubMed ID: 15446820 [TBL] [Abstract][Full Text] [Related]
14. QSAR study of Akt/protein kinase B (PKB) inhibitors using support vector machine. Dong X; Jiang C; Hu H; Yan J; Chen J; Hu Y Eur J Med Chem; 2009 Oct; 44(10):4090-7. PubMed ID: 19497644 [TBL] [Abstract][Full Text] [Related]
15. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. Zernov VV; Balakin KV; Ivaschenko AA; Savchuk NP; Pletnev IV J Chem Inf Comput Sci; 2003; 43(6):2048-56. PubMed ID: 14632457 [TBL] [Abstract][Full Text] [Related]
16. In silico prediction of pregnane X receptor activators by machine learning approaches. Ung CY; Li H; Yap CW; Chen YZ Mol Pharmacol; 2007 Jan; 71(1):158-68. PubMed ID: 17003167 [TBL] [Abstract][Full Text] [Related]
18. A comparison of different QSAR approaches to modeling CYP450 1A2 inhibition. Novotarskyi S; Sushko I; Körner R; Pandey AK; Tetko IV J Chem Inf Model; 2011 Jun; 51(6):1271-80. PubMed ID: 21598906 [TBL] [Abstract][Full Text] [Related]
19. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression. Du H; Wang J; Hu Z; Yao X; Zhang X J Agric Food Chem; 2008 Nov; 56(22):10785-92. PubMed ID: 18950187 [TBL] [Abstract][Full Text] [Related]
20. Quantitative prediction of logk of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine. Liu HX; Xue CX; Zhang RS; Yao XJ; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(6):1979-86. PubMed ID: 15554667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]