BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17418813)

  • 1. Reversible AChE inhibitors in C. elegans vs. rats, mice.
    Melstrom PC; Williams PL
    Biochem Biophys Res Commun; 2007 May; 357(1):200-5. PubMed ID: 17418813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on the relationship between various toxicological endpoints in Caenorhabditis elegans exposed to organophosphorus insecticides.
    Rajini PS; Melstrom P; Williams PL
    J Toxicol Environ Health A; 2008; 71(15):1043-50. PubMed ID: 18569613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity.
    Cole RD; Anderson GL; Williams PL
    Toxicol Appl Pharmacol; 2004 Feb; 194(3):248-56. PubMed ID: 14761681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major intermediates in organophosphate synthesis (PCl3, POCl3, PSCl3, and their diethyl esters) are anticholinesterase agents directly or on activation.
    Segall Y; Quistad GB; Sparks SE; Casida JE
    Chem Res Toxicol; 2003 Mar; 16(3):350-6. PubMed ID: 12641435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans.
    Roh JY; Choi J
    Ecotoxicol Environ Saf; 2008 Oct; 71(2):483-9. PubMed ID: 18187192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration.
    Xuereb B; Lefèvre E; Garric J; Geffard O
    Aquat Toxicol; 2009 Aug; 94(2):114-22. PubMed ID: 19608286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant and acetylcholinesterase response to repeated malathion exposure in rat cerebral cortex and hippocampus.
    Trevisan R; Uliano-Silva M; Pandolfo P; Franco JL; Brocardo PS; Santos AR; Farina M; Rodrigues AL; Takahashi RN; Dafre AL
    Basic Clin Pharmacol Toxicol; 2008 Apr; 102(4):365-9. PubMed ID: 18341513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration- and time-dependent behavioral changes in Caenorhabditis elegans after exposure to nicotine.
    Sobkowiak R; Kowalski M; Lesicki A
    Pharmacol Biochem Behav; 2011 Sep; 99(3):365-70. PubMed ID: 21624385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors.
    Herkert NM; Eckert S; Eyer P; Bumm R; Weber G; Thiermann H; Worek F
    Toxicology; 2008 Apr; 246(2-3):188-92. PubMed ID: 18304715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to determine precise benchmark doses for carbamate anticholinesterases.
    Lassiter TL; Brimijoin S
    Toxicol Sci; 2007 Mar; 96(1):154-61. PubMed ID: 17159234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed behavioral and endocrine effects of sarin and stress exposure in mice.
    Mach M; Grubbs RD; Price WA; Nagaoka M; Dubovický M; Lucot JB
    J Appl Toxicol; 2008 Mar; 28(2):132-9. PubMed ID: 17503400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the larvae nematode Caenorhabditis elegans to evaluate neurobehavioral toxicity to metallic salts.
    Xing X; Guo Y; Wang D
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1819-23. PubMed ID: 19573919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones.
    Kearn J; Ludlow E; Dillon J; O'Connor V; Holden-Dye L
    Pestic Biochem Physiol; 2014 Feb; 109():44-57. PubMed ID: 24581383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human.
    Vidair CA
    Toxicol Appl Pharmacol; 2004 Apr; 196(2):287-302. PubMed ID: 15081274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of sublethal effects of dichlorvos upon Caenorhabditis elegans based on a set of end points of toxicity.
    Jadhav KB; Rajini PS
    J Biochem Mol Toxicol; 2009; 23(1):9-17. PubMed ID: 19202558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caenorhabditis elegans as an alternative animal species.
    Williams PL; Anderson GL; Johnstone JL; Nunn AD; Tweedle MF; Wedeking P
    J Toxicol Environ Health A; 2000 Dec; 61(8):641-7. PubMed ID: 11132694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term effects of Quirlan (chlorfenvinphos) on the behavior and acetylcholinesterase activity of Gambusia holbrooki.
    Sismeiro-Vivas J; Abrantes N; Pereira JL; Castro BB; Gonçalves F
    Environ Toxicol; 2007 Apr; 22(2):194-202. PubMed ID: 17366566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of muscarinic signal transduction and CREB phosphorylation in dichlorvos-induced memory deficits in rats: an acetylcholine independent mechanism.
    Verma SK; Raheja G; Gill KD
    Toxicology; 2009 Feb; 256(3):175-82. PubMed ID: 19100812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute toxicity of synthetic Gymnodinium breve toxin metabolite and its analogues in mice.
    Husain K; Singh R; Kaushik MP; Gupta AK
    Ecotoxicol Environ Saf; 1996 Oct; 35(1):77-80. PubMed ID: 8930507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny.
    Wang D; Wang Y
    Environ Pollut; 2008 Feb; 151(3):585-92. PubMed ID: 17540486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.