BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 17418880)

  • 1. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 degrees C temperatures is limited by acetate oxidation.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Water Res; 2007 Jun; 41(12):2706-14. PubMed ID: 17418880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Apr; 96(6):1064-72. PubMed ID: 17004272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater.
    Kaksonen AH; Plumb JJ; Franzmann PD; Puhakka JA
    FEMS Microbiol Ecol; 2004 Mar; 47(3):279-89. PubMed ID: 19712316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A; Ren N; Wang X; Lee D
    J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers.
    Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G
    Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.
    Sahinkaya E
    J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenotrophic sulfate reduction in a gas-lift bioreactor operated at 9 degrees C.
    Nevatalo LM; Bijmans MF; Lens PN; Kaksonen AH; Puhakka JA
    J Microbiol Biotechnol; 2010 Mar; 20(3):615-21. PubMed ID: 20372036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor.
    Balk M; Altinbaş M; Rijpstra WI; Sinninghe Damsté JS; Stams AJ
    Int J Syst Evol Microbiol; 2008 Jan; 58(Pt 1):110-5. PubMed ID: 18175693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.
    Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA
    Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of population dynamics in sulfate-reducing consortia on exposure to sulfate.
    Icgen B; Harrison S
    Res Microbiol; 2006 Dec; 157(10):922-7. PubMed ID: 17008063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-rate sulphidogenic fluidised-bed treatment of metal-containing wastewater at high temperature.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Water Sci Technol; 2007; 55(10):269-75. PubMed ID: 17564394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions.
    Okabe S; Ito T; Satoh H
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):322-34. PubMed ID: 12879306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.
    Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ
    Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.
    Omil F; Lens P; Visser A; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 1998 Mar; 57(6):676-85. PubMed ID: 10099247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors.
    Freeman SA; Sierra-Alvarez R; Altinbas M; Hollingsworth J; Stams AJ; Smidt H
    Biodegradation; 2008 Apr; 19(2):161-77. PubMed ID: 17479349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater.
    Sahinkaya E; Gungor M
    Bioresour Technol; 2010 Dec; 101(24):9508-14. PubMed ID: 20724148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations.
    Tsukamoto TK; Killion HA; Miller GC
    Water Res; 2004 Mar; 38(6):1405-18. PubMed ID: 15016517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.