BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17419589)

  • 1. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
    Russell R; Tijerina P; Chadee AB; Bhaskaran H
    Biochemistry; 2007 May; 46(17):4951-61. PubMed ID: 17419589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.
    Chadee AB; Bhaskaran H; Russell R
    J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple unfolding events during native folding of the Tetrahymena group I ribozyme.
    Wan Y; Suh H; Russell R; Herschlag D
    J Mol Biol; 2010 Jul; 400(5):1067-77. PubMed ID: 20541557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme.
    Shcherbakova I; Gupta S; Chance MR; Brenowitz M
    J Mol Biol; 2004 Oct; 342(5):1431-42. PubMed ID: 15364572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA.
    Pan J; Deras ML; Woodson SA
    J Mol Biol; 2000 Feb; 296(1):133-44. PubMed ID: 10656822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding mechanism of the Tetrahymena ribozyme P4-P6 domain.
    Deras ML; Brenowitz M; Ralston CY; Chance MR; Woodson SA
    Biochemistry; 2000 Sep; 39(36):10975-85. PubMed ID: 10998234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a GNRA tetraloop in P5abc can disrupt an interdomain interaction in the Tetrahymena group I ribozyme.
    Zheng M; Wu M; Tinoco I
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):3695-700. PubMed ID: 11274387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Structural Modules Control the Rate and Pathway of RNA Folding and Assembly.
    Gracia B; Xue Y; Bisaria N; Herschlag D; Al-Hashimi HM; Russell R
    J Mol Biol; 2016 Oct; 428(20):3972-3985. PubMed ID: 27452365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding pathways of the Tetrahymena ribozyme.
    Mitchell D; Russell R
    J Mol Biol; 2014 Jun; 426(12):2300-12. PubMed ID: 24747051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced specificity against misfolding in a thermostable mutant of the Tetrahymena ribozyme.
    Wan Y; Russell R
    Biochemistry; 2011 Feb; 50(5):864-74. PubMed ID: 21174447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of an exceptionally stable RNA tertiary interface in a group I ribozyme.
    Doherty EA; Herschlag D; Doudna JA
    Biochemistry; 1999 Mar; 38(10):2982-90. PubMed ID: 10074350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The long-range P3 helix of the Tetrahymena ribozyme is disrupted during folding between the native and misfolded conformations.
    Mitchell D; Jarmoskaite I; Seval N; Seifert S; Russell R
    J Mol Biol; 2013 Aug; 425(15):2670-86. PubMed ID: 23702292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The paradoxical behavior of a highly structured misfolded intermediate in RNA folding.
    Russell R; Das R; Suh H; Travers KJ; Laederach A; Engelhardt MA; Herschlag D
    J Mol Biol; 2006 Oct; 363(2):531-44. PubMed ID: 16963081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the newly constructed domains that replace P5abc within the Tetrahymena ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 1996 Sep; 394(1):5-8. PubMed ID: 8925926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Early Folding Intermediates of the Tetrahymena Ribozyme are Kinetically Trapped.
    Ralston CY; Sclavi B; Brenowitz M; Sullivan M; Chance MR
    J Biomol Struct Dyn; 2000; 17 Suppl 1():195-200. PubMed ID: 22607424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.
    Narlikar GJ; Bartley LE; Khosla M; Herschlag D
    Biochemistry; 1999 Oct; 38(43):14192-204. PubMed ID: 10571993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding path of P5abc RNA involves direct coupling of secondary and tertiary structures.
    Koculi E; Cho SS; Desai R; Thirumalai D; Woodson SA
    Nucleic Acids Res; 2012 Sep; 40(16):8011-20. PubMed ID: 22641849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.