These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 17419774)
1. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. Boer VM; Tai SL; Vuralhan Z; Arifin Y; Walsh MC; Piper MD; de Winde JH; Pronk JT; Daran JM FEMS Yeast Res; 2007 Jun; 7(4):604-20. PubMed ID: 17419774 [TBL] [Abstract][Full Text] [Related]
2. Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. Boer VM; Daran JM; Almering MJ; de Winde JH; Pronk JT FEMS Yeast Res; 2005 Jul; 5(10):885-97. PubMed ID: 15949974 [TBL] [Abstract][Full Text] [Related]
3. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Vuralhan Z; Luttik MA; Tai SL; Boer VM; Morais MA; Schipper D; Almering MJ; Kötter P; Dickinson JR; Daran JM; Pronk JT Appl Environ Microbiol; 2005 Jun; 71(6):3276-84. PubMed ID: 15933030 [TBL] [Abstract][Full Text] [Related]
4. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. Scherens B; Feller A; Vierendeels F; Messenguy F; Dubois E FEMS Yeast Res; 2006 Aug; 6(5):777-91. PubMed ID: 16879428 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. Beltran G; Novo M; Rozès N; Mas A; Guillamón JM FEMS Yeast Res; 2004 Mar; 4(6):625-32. PubMed ID: 15040951 [TBL] [Abstract][Full Text] [Related]
6. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen. Airoldi EM; Miller D; Athanasiadou R; Brandt N; Abdul-Rahman F; Neymotin B; Hashimoto T; Bahmani T; Gresham D Mol Biol Cell; 2016 Apr; 27(8):1383-96. PubMed ID: 26941329 [TBL] [Abstract][Full Text] [Related]
7. Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation. Usaite R; Patil KR; Grotkjaer T; Nielsen J; Regenberg B Appl Environ Microbiol; 2006 Sep; 72(9):6194-203. PubMed ID: 16957246 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide expression analysis of genes affected by amino acid sensor Ssy1p in Saccharomyces cerevisiae. Kodama Y; Omura F; Takahashi K; Shirahige K; Ashikari T Curr Genet; 2002 May; 41(2):63-72. PubMed ID: 12073087 [TBL] [Abstract][Full Text] [Related]
9. Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. Abbott DA; Knijnenburg TA; de Poorter LM; Reinders MJ; Pronk JT; van Maris AJ FEMS Yeast Res; 2007 Sep; 7(6):819-33. PubMed ID: 17484738 [TBL] [Abstract][Full Text] [Related]
10. Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation. Jiménez-Martí E; del Olmo ML FEMS Yeast Res; 2008 Mar; 8(2):245-56. PubMed ID: 17986253 [TBL] [Abstract][Full Text] [Related]
11. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508 [TBL] [Abstract][Full Text] [Related]
12. Prions of yeast fail to elicit a transcriptional response. Ross ED; Wickner RB Yeast; 2004 Aug; 21(11):963-72. PubMed ID: 15334559 [TBL] [Abstract][Full Text] [Related]
13. Transcript and proteomic analyses of wild-type and gpa2 mutant Saccharomyces cerevisiae strains suggest a role for glycolytic carbon source sensing in pseudohyphal differentiation. Medintz IL; Vora GJ; Rahbar AM; Thach DC Mol Biosyst; 2007 Sep; 3(9):623-34. PubMed ID: 17700863 [TBL] [Abstract][Full Text] [Related]
14. [Limiting the growth of Saccharomyces serevisiae yeasts under chemostat conditions by carbon and nitrogen sources]. Shkidchenko AN Mikrobiologiia; 1984; 53(1):58-62. PubMed ID: 6369084 [TBL] [Abstract][Full Text] [Related]
15. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae. Roberts GG; Hudson AP Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764 [TBL] [Abstract][Full Text] [Related]
16. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. Zhao S; Zhao X; Zou H; Fu J; Du G; Zhou J; Chen J J Proteomics; 2014 Apr; 101():102-12. PubMed ID: 24530623 [TBL] [Abstract][Full Text] [Related]
17. The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds. Jiménez-Martí E; Aranda A; Mendes-Ferreira A; Mendes-Faia A; del Olmo ML Antonie Van Leeuwenhoek; 2007 Jul; 92(1):61-75. PubMed ID: 17252314 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen starvation induces expression of Lg-FLO1 and flocculation in bottom-fermenting yeast. Ogata T Yeast; 2012 Nov; 29(11):487-94. PubMed ID: 23065862 [TBL] [Abstract][Full Text] [Related]
19. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. Mashego MR; Jansen ML; Vinke JL; van Gulik WM; Heijnen JJ FEMS Yeast Res; 2005 Feb; 5(4-5):419-30. PubMed ID: 15691747 [TBL] [Abstract][Full Text] [Related]
20. Chemostat-based micro-array analysis in baker's yeast. Daran-Lapujade P; Daran JM; van Maris AJ; de Winde JH; Pronk JT Adv Microb Physiol; 2009; 54():257-311. PubMed ID: 18929070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]