These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 17420045)
1. A study of local effect and global effect on the microthermal bio-flows by molecular dynamics. Lin DT Int J Biol Macromol; 2007 Aug; 41(3):260-5. PubMed ID: 17420045 [TBL] [Abstract][Full Text] [Related]
2. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
3. Flow-induced thermal effects on spatial DNA melting. Crews N; Ameel T; Wittwer C; Gale B Lab Chip; 2008 Nov; 8(11):1922-9. PubMed ID: 18941694 [TBL] [Abstract][Full Text] [Related]
4. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips. Gui L; Ren CL Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592 [TBL] [Abstract][Full Text] [Related]
5. The heat transfer analysis of nanoparticle heat source in alanine tissue by molecular dynamics. Lin DT; Yang CY Int J Biol Macromol; 2005 Sep; 36(4):225-31. PubMed ID: 16076483 [TBL] [Abstract][Full Text] [Related]
6. Quantification of electrical field-induced flow reversal in a microchannel. Pirat C; Naso A; van der Wouden EJ; Gardeniers JG; Lohse D; van den Berg A Lab Chip; 2008 Jun; 8(6):945-9. PubMed ID: 18497916 [TBL] [Abstract][Full Text] [Related]
8. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications. Kim YW; Yoo JY Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591 [TBL] [Abstract][Full Text] [Related]
10. Recursive estimation of transient inhomogeneous zeta potential in microchannel turns using velocity measurements. Park HM; Kim TW Biomed Microdevices; 2009 Feb; 11(1):231-41. PubMed ID: 18807196 [TBL] [Abstract][Full Text] [Related]
11. Theoretical and numerical analysis of temperature gradient focusing via Joule heating. Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010 [TBL] [Abstract][Full Text] [Related]
12. Numerical and experimental evaluation of microfluidic sorting devices. Taylor JK; Ren CL; Stubley GD Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907 [TBL] [Abstract][Full Text] [Related]
13. Temperature distribution effects on micro-CFPCR performance. Chen PC; Nikitopoulos DE; Soper SA; Murphy MC Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180 [TBL] [Abstract][Full Text] [Related]
14. Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties. Kwak HS; Kim H; Hyun JM; Song TH J Colloid Interface Sci; 2009 Jul; 335(1):123-9. PubMed ID: 19395013 [TBL] [Abstract][Full Text] [Related]
15. Numerical modeling of the Joule heating effect on electrokinetic flow focusing. Huang KD; Yang RJ Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299 [TBL] [Abstract][Full Text] [Related]
16. Electrokinetic instability effects in microchannels with and without nanofilm coatings. Fu LM; Hong TF; Wen CY; Tsai CH; Lin CH Electrophoresis; 2008 Dec; 29(24):4871-9. PubMed ID: 19130549 [TBL] [Abstract][Full Text] [Related]
17. Simulations of IEF in microchannel with variable cross-sectional area. Chou Y; Yang RJ Electrophoresis; 2009 Mar; 30(5):819-30. PubMed ID: 19199292 [TBL] [Abstract][Full Text] [Related]