These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 17420045)
21. General concept of high-performance amperometric detector for microfluidic (bio)analytical chips. Amatore C; Da Mota N; Sella C; Thouin L Anal Chem; 2008 Jul; 80(13):4976-85. PubMed ID: 18470995 [TBL] [Abstract][Full Text] [Related]
22. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure. Hou HH; Tsai CH; Fu LM; Yang RJ Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570 [TBL] [Abstract][Full Text] [Related]
23. Study of miscible and immiscible flows in a microchannel using magnetic resonance imaging. Akpa BS; Matthews SM; Sederman AJ; Yunus K; Fisher AC; Johns ML; Gladden LF Anal Chem; 2007 Aug; 79(16):6128-34. PubMed ID: 17630718 [TBL] [Abstract][Full Text] [Related]
24. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related]
25. Microfluidic thermodynamics of the shift in thermal stability of DNA duplex in a microchannel laminar flow. Yamashita K; Miyazaki M; Yamaguchi Y; Nakamura H; Maeda H J Phys Chem B; 2007 Jun; 111(22):6127-33. PubMed ID: 17500552 [TBL] [Abstract][Full Text] [Related]
26. Chemotaxis in microfluidic devices--a study of flow effects. Beta C; Fröhlich T; Bödeker HU; Bodenschatz E Lab Chip; 2008 Jul; 8(7):1087-96. PubMed ID: 18584083 [TBL] [Abstract][Full Text] [Related]
27. Flow of microgel capsules through topographically patterned microchannels. Fiddes LK; Young EW; Kumacheva E; Wheeler AR Lab Chip; 2007 Jul; 7(7):863-7. PubMed ID: 17594005 [TBL] [Abstract][Full Text] [Related]
28. Numerical simulation of global hydro-dynamics in a pulsatile bioreactor for cardiovascular tissue engineering. Shi Y J Biomech; 2008; 41(5):953-9. PubMed ID: 18261734 [TBL] [Abstract][Full Text] [Related]
29. Understanding microchannel culture: parameters involved in soluble factor signaling. Yu H; Alexander CM; Beebe DJ Lab Chip; 2007 Jun; 7(6):726-30. PubMed ID: 17538714 [TBL] [Abstract][Full Text] [Related]
30. Microfluidic chip to produce temperature jumps for electrophysiology. Pennell T; Suchyna T; Wang J; Heo J; Felske JD; Sachs F; Hua SZ Anal Chem; 2008 Apr; 80(7):2447-51. PubMed ID: 18302344 [TBL] [Abstract][Full Text] [Related]
31. Boundary conditions in simulation of stenosed coronary arteries. Mohammadi H; Bahramian F Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262 [TBL] [Abstract][Full Text] [Related]
32. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Chang ST; Beaumont E; Petsev DN; Velev OD Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769 [TBL] [Abstract][Full Text] [Related]
33. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Mao X; Lin SC; Dong C; Huang TJ Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866 [TBL] [Abstract][Full Text] [Related]
34. Joule heating in electrokinetic flow. Xuan X Electrophoresis; 2008 Jan; 29(1):33-43. PubMed ID: 18058768 [TBL] [Abstract][Full Text] [Related]
35. A micro circulating PCR chip using a suction-type membrane for fluidic transport. Chien LJ; Wang JH; Hsieh TM; Chen PH; Chen PJ; Lee DS; Luo CH; Lee GB Biomed Microdevices; 2009 Apr; 11(2):359-67. PubMed ID: 18975094 [TBL] [Abstract][Full Text] [Related]
36. Simple fabrication technique for rapid prototyping of seamless cylindrical microchannels in polymer substrates. Perry H; Greiner C; Georgakoudi I; Cronin-Golomb M; Omenetto FG Rev Sci Instrum; 2007 Apr; 78(4):044302. PubMed ID: 17477682 [TBL] [Abstract][Full Text] [Related]
37. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices. Lerch MA; Hoffman MD; Jacobson SC Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672 [TBL] [Abstract][Full Text] [Related]
38. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518 [TBL] [Abstract][Full Text] [Related]
39. Computational fluid dynamics simulations of intracranial aneurysms at varying heart rates: a "patient-specific" study. Jiang J; Strother C J Biomech Eng; 2009 Sep; 131(9):091001. PubMed ID: 19725690 [TBL] [Abstract][Full Text] [Related]
40. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Park HM; Lee WM Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]