These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 17420131)
1. Calculation of binding energy using BLYP/MM for the HIV-1 integrase complexed with the S-1360 and two analogues. Alves CN; Martí S; Castillo R; Andrés J; Moliner V; Tuñón I; Silla E Bioorg Med Chem; 2007 Jun; 15(11):3818-24. PubMed ID: 17420131 [TBL] [Abstract][Full Text] [Related]
2. A quantum mechanics/molecular mechanics study of the protein-ligand interaction for inhibitors of HIV-1 integrase. Alves CN; Martí S; Castillo R; Andrés J; Moliner V; Tuñón I; Silla E Chemistry; 2007; 13(27):7715-24. PubMed ID: 17570717 [TBL] [Abstract][Full Text] [Related]
3. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. Chen X; Tsiang M; Yu F; Hung M; Jones GS; Zeynalzadegan A; Qi X; Jin H; Kim CU; Swaminathan S; Chen JM J Mol Biol; 2008 Jul; 380(3):504-19. PubMed ID: 18565342 [TBL] [Abstract][Full Text] [Related]
4. Insights into the interactions between HIV-1 integrase and human LEDGF/p75 by molecular dynamics simulation and free energy calculation. Zhao Y; Li W; Zeng J; Liu G; Tang Y Proteins; 2008 Aug; 72(2):635-45. PubMed ID: 18247352 [TBL] [Abstract][Full Text] [Related]
6. Design and optimization of tricyclic phtalimide analogues as novel inhibitors of HIV-1 integrase. Verschueren WG; Dierynck I; Amssoms KI; Hu L; Boonants PM; Pille GM; Daeyaert FF; Hertogs K; Surleraux DL; Wigerinck PB J Med Chem; 2005 Mar; 48(6):1930-40. PubMed ID: 15771437 [TBL] [Abstract][Full Text] [Related]
7. Influence of Mg2+ on the binding modes of HIV-1 integrase with thiazolothiazepine inhibitor studied by molecular simulation. Wang L Comput Biol Med; 2009 Apr; 39(4):355-60. PubMed ID: 19268284 [TBL] [Abstract][Full Text] [Related]
8. A docking study of L-chicoric acid with HIV-1 integrase. Healy EF; Sanders J; King PJ; Robinson WE J Mol Graph Model; 2009 Jan; 27(5):584-9. PubMed ID: 19004651 [TBL] [Abstract][Full Text] [Related]
9. Diketo acid pharmacophore. 2. Discovery of structurally diverse inhibitors of HIV-1 integrase. Dayam R; Sanchez T; Neamati N J Med Chem; 2005 Dec; 48(25):8009-15. PubMed ID: 16335925 [TBL] [Abstract][Full Text] [Related]
10. Crystal and electronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexes of the quinoline half of styrylquinoline-type HIV-1 integrase inhibitors. Courcot B; Firley D; Fraisse B; Becker P; Gillet JM; Pattison P; Chernyshov D; Sghaier M; Zouhiri F; Desmaële D; d'Angelo J; Bonhomme F; Geiger S; Ghermani NE J Phys Chem B; 2007 May; 111(21):6042-50. PubMed ID: 17488111 [TBL] [Abstract][Full Text] [Related]
11. Structural and theoretical studies of [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl)]-4-hydroxy-2-oxo-3-butenoïc acid as HIV-1 integrase inhibitor. Vandurm P; Cauvin C; Guiguen A; Georges B; Le Van K; Martinelli V; Cardona C; Mbemba G; Mouscadet JF; Hevesi L; Van Lint C; Wouters J Bioorg Med Chem Lett; 2009 Aug; 19(16):4806-9. PubMed ID: 19556126 [TBL] [Abstract][Full Text] [Related]
12. Active site binding modes of the beta-diketoacids: a multi-active site approach in HIV-1 integrase inhibitor design. Dayam R; Neamati N Bioorg Med Chem; 2004 Dec; 12(24):6371-81. PubMed ID: 15556755 [TBL] [Abstract][Full Text] [Related]
13. Study on the molecular mechanism of inhibiting HIV-1 integrase by EBR28 peptide via molecular modeling approach. Hu JP; Gong XQ; Su JG; Chen WZ; Wang CX Biophys Chem; 2008 Feb; 132(2-3):69-80. PubMed ID: 18037557 [TBL] [Abstract][Full Text] [Related]
14. A quantum mechanic/molecular mechanic study of the wild-type and N155S mutant HIV-1 integrase complexed with diketo acid. Alves CN; Martí S; Castillo R; Andrés J; Moliner V; Tuñón I; Silla E Biophys J; 2008 Apr; 94(7):2443-51. PubMed ID: 17981909 [TBL] [Abstract][Full Text] [Related]
15. Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Marchand C; Johnson AA; Karki RG; Pais GC; Zhang X; Cowansage K; Patel TA; Nicklaus MC; Burke TR; Pommier Y Mol Pharmacol; 2003 Sep; 64(3):600-9. PubMed ID: 12920196 [TBL] [Abstract][Full Text] [Related]
16. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor. Brigo A; Lee KW; Fogolari F; Mustata GI; Briggs JM Proteins; 2005 Jun; 59(4):723-41. PubMed ID: 15815973 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of the activities of reverse transcriptase and integrase of human immunodeficiency virus type-1 by peptides derived from the homologous viral protein R (Vpr). Gleenberg IO; Herschhorn A; Hizi A J Mol Biol; 2007 Jun; 369(5):1230-43. PubMed ID: 17490682 [TBL] [Abstract][Full Text] [Related]
18. Sequence-based design and discovery of peptide inhibitors of HIV-1 integrase: insight into the binding mode of the enzyme. Li HY; Zawahir Z; Song LD; Long YQ; Neamati N J Med Chem; 2006 Jul; 49(15):4477-86. PubMed ID: 16854053 [TBL] [Abstract][Full Text] [Related]
19. Experimental/theoretical electrostatic properties of a styrylquinoline-type HIV-1 integrase inhibitor and its progenitors. Firley D; Courcot B; Gillet JM; Fraisse B; Zouhiri F; Desmaële D; d'Angelo J; Ghermani NE J Phys Chem B; 2006 Jan; 110(1):537-47. PubMed ID: 16471566 [TBL] [Abstract][Full Text] [Related]
20. Intermolecular interactions in the crystal structures of potential HIV-1 integrase inhibitors. Majerz-Maniecka K; Musiol R; Nitek W; Oleksyn BJ; Mouscadet JF; Le Bret M; Polanski J Bioorg Med Chem Lett; 2006 Feb; 16(4):1005-9. PubMed ID: 16289813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]