These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 1742026)
1. Role of calcium and protein kinase C in development of the delayed rectifier potassium current in Xenopus spinal neurons. Desarmenien MG; Spitzer NC Neuron; 1991 Nov; 7(5):797-805. PubMed ID: 1742026 [TBL] [Abstract][Full Text] [Related]
2. In vivo development of voltage-dependent ionic currents in embryonic Xenopus spinal neurons. Desarmenien MG; Clendening B; Spitzer NC J Neurosci; 1993 Jun; 13(6):2575-81. PubMed ID: 8501523 [TBL] [Abstract][Full Text] [Related]
3. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons. O'Dowd DK; Ribera AB; Spitzer NC J Neurosci; 1988 Mar; 8(3):792-805. PubMed ID: 3346722 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of delayed rectifier potassium current in embryonic amphibian myocytes. Ribera AB; Spitzer NC Dev Biol; 1991 Mar; 144(1):119-28. PubMed ID: 1995391 [TBL] [Abstract][Full Text] [Related]
6. Developmental change in calcium-activated chloride current during the differentiation of Xenopus spinal neurons in culture. Hussy N Dev Biol; 1991 Sep; 147(1):225-38. PubMed ID: 1715301 [TBL] [Abstract][Full Text] [Related]
7. Calcium dependence of differentiation of GABA immunoreactivity in spinal neurons. Spitzer NC; Debaca RC; Allen KA; Holliday J J Comp Neurol; 1993 Nov; 337(1):168-75. PubMed ID: 7506271 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. Holliday J; Spitzer NC Dev Biol; 1990 Sep; 141(1):13-23. PubMed ID: 2167857 [TBL] [Abstract][Full Text] [Related]
9. Sustained upregulation in embryonic spinal neurons of a Kv3.1 potassium channel gene encoding a delayed rectifier current. Gurantz D; Lautermilch NJ; Watt SD; Spitzer NC J Neurobiol; 2000 Feb; 42(3):347-56. PubMed ID: 10645974 [TBL] [Abstract][Full Text] [Related]
10. Active dendritic membrane properties of Xenopus larval spinal neurons analyzed with a whole cell soma voltage clamp. Saint Mleux B; Moore LE J Neurophysiol; 2000 Mar; 83(3):1381-93. PubMed ID: 10712465 [TBL] [Abstract][Full Text] [Related]
11. A Ca-dependent Cl- conductance in cultured mouse spinal neurones. Owen DG; Segal M; Barker JL Nature; 1984 Oct 11-17; 311(5986):567-70. PubMed ID: 6482969 [TBL] [Abstract][Full Text] [Related]
12. Temporal regulation of Shaker- and Shab-like potassium channel gene expression in single embryonic spinal neurons during K+ current development. Gurantz D; Ribera AB; Spitzer NC J Neurosci; 1996 May; 16(10):3287-95. PubMed ID: 8627366 [TBL] [Abstract][Full Text] [Related]
13. Antisense suppression of potassium channel expression demonstrates its role in maturation of the action potential. Vincent A; Lautermilch NJ; Spitzer NC J Neurosci; 2000 Aug; 20(16):6087-94. PubMed ID: 10934258 [TBL] [Abstract][Full Text] [Related]
15. Spontaneous neuronal calcium spikes and waves during early differentiation. Gu X; Olson EC; Spitzer NC J Neurosci; 1994 Nov; 14(11 Pt 1):6325-35. PubMed ID: 7965039 [TBL] [Abstract][Full Text] [Related]
16. The development of voltage-dependent ionic conductances in murine spinal cord neurones in culture. Krieger C; Sears TA Can J Physiol Pharmacol; 1988 Oct; 66(10):1328-36. PubMed ID: 2853643 [TBL] [Abstract][Full Text] [Related]
17. Ionic currents in cultured rat suprachiasmatic neurons. Walsh IB; van den Berg RJ; Rietveld WJ Neuroscience; 1995 Dec; 69(3):915-29. PubMed ID: 8596659 [TBL] [Abstract][Full Text] [Related]