These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17420454)

  • 21. Oxidation of Cr(III) on birnessite surfaces: The effect of goethite and kaolinite.
    Zhong L; Yang J; Liu L; Xing B
    J Environ Sci (China); 2015 Nov; 37():8-14. PubMed ID: 26574083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity.
    Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL
    Environ Sci Technol; 2012 Nov; 46(21):11594-600. PubMed ID: 23050871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating.
    Luo Y; Ding J; Hai J; Tan W; Hao R; Qiu G
    Environ Pollut; 2020 May; 260():114046. PubMed ID: 32014747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides.
    Brose DA; James BR
    Environ Sci Technol; 2013 Nov; 47(22):12985-91. PubMed ID: 24102200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic Modeling of Cr(VI) Reduction by nZVI in Soil: The Influence of Organic Matter and Manganese Oxide.
    Di Palma L; Verdone N; Vilardi G
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):692-697. PubMed ID: 29987516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy.
    Slejko FF; Petrini R; Lutman A; Forte C; Ghezzi L
    Isotopes Environ Health Stud; 2019 Mar; 55(1):56-69. PubMed ID: 30621468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromium speciation, mobility, and Cr(VI) retention-release processes in ultramafic rocks and Fe-Ni lateritic deposits of Greece.
    Botsou F; Koutsopoulou E; Andrioti A; Dassenakis M; Scoullos M; Karageorgis AP
    Environ Geochem Health; 2022 Aug; 44(8):2815-2834. PubMed ID: 34476636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromium speciation in groundwater of a tannery polluted area of Chennai City, India.
    Kumar AR; Riyazuddin P
    Environ Monit Assess; 2010 Jan; 160(1-4):579-91. PubMed ID: 19184493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The conditions favourable to oxidation of Cr (III) to Cr (VI) and the presence of chromium forms on the area contaminated by tannery wastes.
    Stepniewska Z; Bucior K
    Folia Histochem Cytobiol; 2001; 39 Suppl 2():146-7. PubMed ID: 11820579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of chromium from water using manganese (II, III) oxides coated sand: adsorption and transformation of Cr(VI) and Cr(III).
    Wu L; Khodadoust AP; Punia S
    Environ Technol; 2023 Jun; 44(14):2113-2133. PubMed ID: 35042451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Hexavalent Chromium Concentration in Groundwater from a Deep Aquifer in the Baiyangdian Basin of the North China Plain.
    Guo H; Chen Y; Hu H; Zhao K; Li H; Yan S; Xiu W; Coyte RM; Vengosh A
    Environ Sci Technol; 2020 Aug; 54(16):10068-10077. PubMed ID: 32672450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks.
    Mills CT; Goldhaber MB
    Sci Total Environ; 2012 Oct; 435-436():363-73. PubMed ID: 22868043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rates of Cr(VI) Generation from Cr
    Pan C; Liu H; Catalano JG; Qian A; Wang Z; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12416-12423. PubMed ID: 29043792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-catalyzed chromium(VI) reduction by organic compounds and soil minerals.
    Tzou YM; Loeppert RH; Wang MK
    J Environ Qual; 2003; 32(6):2076-84. PubMed ID: 14674529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromium transport, oxidation, and adsorption in manganese-coated sand.
    Guha H; Saiers JE; Brooks S; Jardine P; Jayachandran K
    J Contam Hydrol; 2001 Jun; 49(3-4):311-34. PubMed ID: 11411402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissolved organic carbon diminishes manganese oxide-driven oxidation of chromium.
    Balogun FO; Aiken M; Namayandeh A; Duckworth OW; Polizzotto ML
    Chemosphere; 2023 Dec; 344():140424. PubMed ID: 37832888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromium availability in ultramafic soils from New Caledonia.
    Becquer T; Quantin C; Sicot M; Boudot JP
    Sci Total Environ; 2003 Jan; 301(1-3):251-61. PubMed ID: 12493201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.
    Tang Y; Webb SM; Estes ER; Hansel CM
    Environ Sci Process Impacts; 2014 Sep; 16(9):2127-36. PubMed ID: 25079661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of hexavalent chromium from water using manganese-aluminum coated sand: Kinetics, equilibrium, effect of pH and ionic strength.
    Punia S; Wu L; Khodadoust AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(3):334-345. PubMed ID: 33560900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.