BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17420773)

  • 1. Transplantation of porous tubes following spinal cord transection improves hindlimb function in the rat.
    Reynolds LF; Bren MC; Wilson BC; Gibson GD; Shoichet MS; Murphy RJ
    Spinal Cord; 2008 Jan; 46(1):58-64. PubMed ID: 17420773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor unit number estimation may be a useful method to evaluate motor function recovery after spinal cord transection in rats.
    Xiong GX; Guan Y; Hong Y; Zhang JW; Guan H
    Spinal Cord; 2010 May; 48(5):363-6. PubMed ID: 19884895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial recovery after treatment of chronic paraplegia in rat.
    Fraidakis MJ; Spenger C; Olson L
    Exp Neurol; 2004 Jul; 188(1):33-42. PubMed ID: 15191800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat.
    López-Vales R; Forés J; Navarro X; Verdú E
    Glia; 2007 Feb; 55(3):303-11. PubMed ID: 17096411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait analysis of adult paraplegic rats after spinal cord repair.
    Cheng H; Almström S; Giménez-Llort L; Chang R; Ove Ogren S; Hoffer B; Olson L
    Exp Neurol; 1997 Dec; 148(2):544-57. PubMed ID: 9417831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.
    You SW; Chen BY; Liu HL; Lang B; Xia JL; Jiao XY; Ju G
    Restor Neurol Neurosci; 2003; 21(1-2):39-45. PubMed ID: 12808201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of two-dimensional and three-dimensional techniques for the determination of hindlimb kinematics during treadmill locomotion in rats following spinal cord injury.
    Couto PA; Filipe VM; Magalhães LG; Pereira JE; Costa LM; Melo-Pinto P; Bulas-Cruz J; Maurício AC; Geuna S; Varejão AS
    J Neurosci Methods; 2008 Aug; 173(2):193-200. PubMed ID: 18606186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord bypass surgery using peripheral nerve transfers: review of translational studies and a case report on its use following complete spinal cord injury in a human. Experimental article.
    Oppenheim JS; Spitzer DE; Winfree CJ
    Neurosurg Focus; 2009 Feb; 26(2):E6. PubMed ID: 19435446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. F-wave amplitudes indicate evolving spinal autonomy during spontaneous recovery of hindlimb function in rat spinal cord contusion.
    Wedekind C; Ullrich R; Klug N
    Spinal Cord; 2006 Jan; 44(1):44-8. PubMed ID: 16010278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of neonatal spinal transection and dorsal rhizotomy on hindlimb muscles.
    Chatzisotiriou AS; Kapoukranidou D; Gougoulias NE; Albani M
    Brain Res Dev Brain Res; 2005 Jun; 157(2):113-23. PubMed ID: 15921763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body weight, limb size, and muscular properties of early paraplegic mice.
    Landry E; Frenette J; Guertin PA
    J Neurotrauma; 2004 Aug; 21(8):1008-16. PubMed ID: 15319000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats.
    Pereira JE; Costa LM; Cabrita AM; Couto PA; Filipe VM; Magalhães LG; Fornaro M; Di Scipio F; Geuna S; Maurício AC; Varejão AS
    Exp Neurol; 2009 Nov; 220(1):71-81. PubMed ID: 19665461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining motor training with transplantation of rat bone marrow stromal cells does not improve repair or recovery in rats with thoracic contusion injuries.
    Yoshihara H; Shumsky JS; Neuhuber B; Otsuka T; Fischer I; Murray M
    Brain Res; 2006 Nov; 1119(1):65-75. PubMed ID: 17027672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of olfactory mucosa following spinal cord injury promotes recovery in rats.
    Iwatsuki K; Yoshimine T; Kishima H; Aoki M; Yoshimura K; Ishihara M; Ohnishi Y; Lima C
    Neuroreport; 2008 Aug; 19(13):1249-52. PubMed ID: 18695502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats.
    Mitsui T; Fischer I; Shumsky JS; Murray M
    Exp Neurol; 2005 Aug; 194(2):410-31. PubMed ID: 16022868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Return of function after spinal cord transection.
    Heimburger RF
    Spinal Cord; 2005 Jul; 43(7):438-40. PubMed ID: 15809673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat.
    Collazos-Castro JE; Soto VM; Gutiérrez-Dávila M; Nieto-Sampedro M
    J Neurotrauma; 2005 May; 22(5):544-58. PubMed ID: 15892600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.