These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 17421040)
1. Hydrogen sulfide production from elemental sulfur by Desulfovibrio desulfuricans in an anaerobic bioreactor. Escobar C; Bravo L; Hernández J; Herrera L Biotechnol Bioeng; 2007 Oct; 98(3):569-77. PubMed ID: 17421040 [TBL] [Abstract][Full Text] [Related]
2. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. van den Bosch PL; van Beusekom OC; Buisman CJ; Janssen AJ Biotechnol Bioeng; 2007 Aug; 97(5):1053-63. PubMed ID: 17216660 [TBL] [Abstract][Full Text] [Related]
3. Polysulfide reduction using sulfate-reducing bacteria in a photocatalytic hydrogen generation system. Takahashi Y; Suto K; Inoue C; Chida T J Biosci Bioeng; 2008 Sep; 106(3):219-25. PubMed ID: 18929995 [TBL] [Abstract][Full Text] [Related]
4. Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process. Kleinjan WE; Lammers JN; de Keizer A; Janssen AJ Biotechnol Bioeng; 2006 Jul; 94(4):633-44. PubMed ID: 16514676 [TBL] [Abstract][Full Text] [Related]
5. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor. Nevatalo LM; Mäkinen AE; Kaksonen AH; Puhakka JA Bioresour Technol; 2010 Jan; 101(1):276-84. PubMed ID: 19716290 [TBL] [Abstract][Full Text] [Related]
6. Performance of a substratum-irradiated photosynthetic biofilm reactor for the removal of sulfide from wastewater. Hurse TJ; Keller J Biotechnol Bioeng; 2004 Jul; 87(1):14-23. PubMed ID: 15211484 [TBL] [Abstract][Full Text] [Related]
7. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater. Rattanapan C; Boonsawang P; Kantachote D Bioresour Technol; 2009 Jan; 100(1):125-30. PubMed ID: 18619836 [TBL] [Abstract][Full Text] [Related]
8. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. Lee EY; Lee NY; Cho KS; Ryu HW J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938 [TBL] [Abstract][Full Text] [Related]
9. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933 [TBL] [Abstract][Full Text] [Related]
10. Microbial reduction of sulfur dioxide with anaerobically digested municipal sewage biosolids as electron donors. Selvaraj PT; Sublette KL Biotechnol Prog; 1995; 11(2):153-8. PubMed ID: 7766099 [TBL] [Abstract][Full Text] [Related]
11. Performance of an anaerobic bioreactor with biomass recycling, continuously removing COD and sulphate from industrial wastes. Kosińska K; Miśkiewicz T Bioresour Technol; 2009 Jan; 100(1):86-90. PubMed ID: 18650086 [TBL] [Abstract][Full Text] [Related]
12. Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent. Sahinkaya E; Hasar H; Kaksonen AH; Rittmann BE Environ Sci Technol; 2011 May; 45(9):4080-7. PubMed ID: 21452867 [TBL] [Abstract][Full Text] [Related]
13. Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters. Lloyd JR; Thomas GH; Finlay JA; Cole JA; Macaskie LE Biotechnol Bioeng; 1999; 66(2):122-30. PubMed ID: 10567070 [TBL] [Abstract][Full Text] [Related]
14. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. van Houten RT; Pol LW; Lettinga G Biotechnol Bioeng; 1994 Aug; 44(5):586-94. PubMed ID: 18618794 [TBL] [Abstract][Full Text] [Related]
15. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium? Boonchayaanant B; Gu B; Wang W; Ortiz ME; Criddle CS Biodegradation; 2010 Feb; 21(1):81-95. PubMed ID: 19597947 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of biogenic sulfide production in a packed-bed bioreactor via critical inoculum design and carrier material selection. McMahon MJ; Daugulis AJ Biotechnol Bioeng; 2008 Aug; 100(5):855-63. PubMed ID: 18350591 [TBL] [Abstract][Full Text] [Related]
17. Removal of hydrogen sulfide by Chlorobium thiosulfatophilum in immobilized-cell and sulfur-settling free-cell recycle reactors. Kim BW; Chang HN Biotechnol Prog; 1991; 7(6):495-500. PubMed ID: 1367751 [TBL] [Abstract][Full Text] [Related]
18. Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Janssen AJ; Ma SC; Lens P; Lettinga G Biotechnol Bioeng; 1997 Jan; 53(1):32-40. PubMed ID: 18629957 [TBL] [Abstract][Full Text] [Related]
19. Sulfide removal by moderate oxygenation of anaerobic sludge environments. van der Zee FP; Villaverde S; García PA; Fdz-Polanco F Bioresour Technol; 2007 Feb; 98(3):518-24. PubMed ID: 16630720 [TBL] [Abstract][Full Text] [Related]
20. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Gutierrez O; Park D; Sharma KR; Yuan Z Water Res; 2009 May; 43(9):2549-57. PubMed ID: 19345393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]