BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1742350)

  • 1. Structure-function relationships of elongation factor Tu as studied by mutagenesis.
    Anborgh PH; Cool RH; Gümüsel F; Harmark K; Jacquet E; Weijland A; Mistou MY; Parmeggiani A
    Biochimie; 1991; 73(7-8):1051-9. PubMed ID: 1742350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis of the NH2-terminal domain of elongation factor Tu.
    Gümüşel F; Cool RH; Weijland A; Anborgh PH; Parmeggiani A
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):215-21. PubMed ID: 2119812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis of elongation factor Tu. The functional and structural role of residue Cys81.
    Anborgh PH; Parmeggiani A; Jonák J
    Eur J Biochem; 1992 Sep; 208(2):251-7. PubMed ID: 1521523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain.
    Jensen M; Cool RH; Mortensen KK; Clark BF; Parmeggiani A
    Eur J Biochem; 1989 Jun; 182(2):247-55. PubMed ID: 2661226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of histidine-84 and the GTPase mechanism of elongation factor Tu.
    Cool RH; Parmeggiani A
    Biochemistry; 1991 Jan; 30(2):362-6. PubMed ID: 1899022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of a genetically engineered G domain of elongation factor Tu.
    Parmeggiani A; Swart GW; Mortensen KK; Jensen M; Clark BF; Dente L; Cortese R
    Proc Natl Acad Sci U S A; 1987 May; 84(10):3141-5. PubMed ID: 3554231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300.
    Zeidler W; Egle C; Ribeiro S; Wagner A; Katunin V; Kreutzer R; Rodnina M; Wintermeyer W; Sprinzl M
    Eur J Biochem; 1995 May; 229(3):596-604. PubMed ID: 7758452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8.
    Nock S; Grillenbeck N; Ahmadian MR; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1995 Nov; 234(1):132-9. PubMed ID: 8529632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chimeric elongation factor containing the putative guanine nucleotide binding domain of archaeal EF-1 alpha and the M and C domains of eubacterial EF-Tu.
    Arcari P; Masullo M; Arcucci A; Ianniciello G; de Paola B; Bocchini V
    Biochemistry; 1999 Sep; 38(38):12288-95. PubMed ID: 10493796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of aspartic acid-80, a residue involved in coordination of magnesium, weakens the GTP binding and strongly enhances the GTPase of the G domain of elongation factor Tu.
    Harmark K; Anborgh PH; Merola M; Clark BF; Parmeggiani A
    Biochemistry; 1992 Aug; 31(32):7367-72. PubMed ID: 1510926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis of bacterial elongation factor Tu at lysine 136. A conserved amino acid in GTP regulatory proteins.
    Hwang YW; Sanchez A; Miller DL
    J Biol Chem; 1989 May; 264(14):8304-9. PubMed ID: 2498311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.
    Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B
    J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of Thermus thermophilus EF-Tu: the substitution of threonine-62 by serine or alanine.
    Ahmadian MR; Kreutzer R; Blechschmidt B; Sprinzl M
    FEBS Lett; 1995 Dec; 377(2):253-7. PubMed ID: 8543062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationships in the GTP binding domain of EF-Tu: mutation of Val20, the residue homologous to position 12 in p21.
    Jacquet E; Parmeggiani A
    EMBO J; 1988 Sep; 7(9):2861-7. PubMed ID: 3181143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands.
    Cetin R; Anborgh PH; Cool RH; Parmeggiani A
    Biochemistry; 1998 Jan; 37(2):486-95. PubMed ID: 9425069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli.
    Mesters JR; Zeef LA; Hilgenfeld R; de Graaf JM; Kraal B; Bosch L
    EMBO J; 1994 Oct; 13(20):4877-85. PubMed ID: 7525272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: its substitution by glutamine and alanine.
    Scarano G; Krab IM; Bocchini V; Parmeggiani A
    FEBS Lett; 1995 May; 365(2-3):214-8. PubMed ID: 7781781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis of three residues, isoleucine-60, threonine-61, and aspartic acid-80, implicated in the GTPase activity of Escherichia coli elongation factor Tu.
    Krab IM; Parmeggiani A
    Biochemistry; 1999 Oct; 38(40):13035-41. PubMed ID: 10529173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.