These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1742455)

  • 1. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes.
    Käs J; Sackmann E
    Biophys J; 1991 Oct; 60(4):825-44. PubMed ID: 1742455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape modification of phospholipid vesicles induced by high pressure: influence of bilayer compressibility.
    Beney L; Perrier-Cornet JM; Hayert M; Gervais P
    Biophys J; 1997 Mar; 72(3):1258-63. PubMed ID: 9138571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid membrane bending as assessed by the shape sequence of giant oblate phospholipid vesicles.
    Majhenc J; Bozic B; Svetina S; Zeks B
    Biochim Biophys Acta; 2004 Aug; 1664(2):257-66. PubMed ID: 15328058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-induced shape change of phospholipid vesicles: implication of compression and phase transition.
    Perrier-Cornet JM; Baddóuj K; Gervais P
    J Membr Biol; 2005 Apr; 204(3):101-7. PubMed ID: 16245032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures.
    Chong PL; Tang D; Sugar IP
    Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles.
    Drazenovic J; Wang H; Roth K; Zhang J; Ahmed S; Chen Y; Bothun G; Wunder SL
    Biochim Biophys Acta; 2015 Feb; 1848(2):532-43. PubMed ID: 25445167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. La(3+) and Gd(3+) induce shape change of giant unilamellar vesicles of phosphatidylcholine.
    Tanaka T; Tamba Y; Masum SM; Yamashita Y; Yamazaki M
    Biochim Biophys Acta; 2002 Aug; 1564(1):173-82. PubMed ID: 12101010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced fluctuations in small phospholipid bilayer vesicles containing cholesterol.
    Michels B; Fazel N; Cerf R
    Eur Biophys J; 1989; 17(4):187-90. PubMed ID: 2612438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape transformation of giant phospholipid vesicles at high concentrations of C12E8.
    Mavcic B; Babnik B; Iglic A; Kanduser M; Slivnik T; Kralj-Iglic V
    Bioelectrochemistry; 2004 Jun; 63(1-2):183-7. PubMed ID: 15110270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicle shapes from molecular dynamics simulations.
    Markvoort AJ; van Santen RA; Hilbers PA
    J Phys Chem B; 2006 Nov; 110(45):22780-5. PubMed ID: 17092028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and morphological transition of long-chain phospholipid vesicles induced by mixing with short-chain phospholipid.
    Takajo Y; Matsuki H; Matsubara H; Tsuchiya K; Aratono M; Yamanaka M
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):571-6. PubMed ID: 20097547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains.
    Lee H
    J Mol Graph Model; 2015 Jul; 60():162-8. PubMed ID: 26055631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sculpting the shapes of giant unilamellar vesicles using isotropic-nematic-isotropic phase cycles.
    Jani P; Nayani K; Abbott NL
    Soft Matter; 2021 Oct; 17(40):9078-9086. PubMed ID: 34558596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stability of micropipet-aspirated giant vesicles with fluid phase coexistence.
    Das S; Tian A; Baumgart T
    J Phys Chem B; 2008 Sep; 112(37):11625-30. PubMed ID: 18717549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry.
    Otten D; Löbbecke L; Beyer K
    Biophys J; 1995 Feb; 68(2):584-97. PubMed ID: 7696511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids.
    Farge E; Devaux PF
    Biophys J; 1992 Feb; 61(2):347-57. PubMed ID: 1547324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape deformation of ternary vesicles coupled with phase separation.
    Yanagisawa M; Imai M; Taniguchi T
    Phys Rev Lett; 2008 Apr; 100(14):148102. PubMed ID: 18518074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of bilirubin on the thermal properties of phosphatidylcholine bilayers.
    Ali S; Zakim D
    Biophys J; 1993 Jul; 65(1):101-5. PubMed ID: 8369418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photophysics of anthracene-indole systems in unilamellar vesicles of DMPC and POPC: Exciplex formation and temperature effects.
    Novaira AI; Previtali CM
    J Photochem Photobiol B; 2006 Nov; 85(2):102-8. PubMed ID: 16831556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.