BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1742461)

  • 1. Membrane binding induces lipid-specific changes in the denaturation profile of bovine prothrombin. A scanning calorimetry study.
    Lentz BR; Wu JR; Sorrentino AM; Carleton JN
    Biophys J; 1991 Oct; 60(4):942-51. PubMed ID: 1742461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylserine-containing membranes alter the thermal stability of prothrombin's catalytic domain: a differential scanning calorimetric study.
    Lentz BR; Zhou CM; Wu JR
    Biochemistry; 1994 May; 33(18):5460-8. PubMed ID: 8180168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform infrared spectroscopic study of Ca2+ and membrane-induced secondary structural changes in bovine prothrombin and prothrombin fragment 1.
    Wu JR; Lentz BR
    Biophys J; 1991 Jul; 60(1):70-80. PubMed ID: 1909190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence from total internal reflection fluorescence microscopy for calcium-independent binding of prothrombin to negatively charged planar phospholipid membranes.
    Tendian SW; Lentz BR; Thompson NL
    Biochemistry; 1991 Nov; 30(45):10991-9. PubMed ID: 1932023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the complex association of bovine factor Va with acidic-lipid-containing synthetic membranes.
    Cutsforth GA; Koppaka V; Krishnaswamy S; Wu JR; Mann KG; Lentz BR
    Biophys J; 1996 Jun; 70(6):2938-49. PubMed ID: 8744332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid-specific conformational changes in human prothrombin upon binding to procoagulant acidic lipid membranes.
    Wu JR; Lentz BR
    Thromb Haemost; 1994 May; 71(5):596-604. PubMed ID: 8091387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the prothrombin fragment 2 domain to the function of factor Va in the prothrombinase complex.
    Krishnaswamy S; Walker RK
    Biochemistry; 1997 Mar; 36(11):3319-30. PubMed ID: 9116010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble phospholipids enhance factor Xa-catalyzed prothrombin activation in solution.
    Koppaka V; Wang J; Banerjee M; Lentz BR
    Biochemistry; 1996 Jun; 35(23):7482-91. PubMed ID: 8652526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural comparisons of meizothrombin and its precursor prothrombin in the presence or absence of procoagulant membranes.
    Pei G; Laue TM; Aulabaugh A; Fowlkes DM; Lentz BR
    Biochemistry; 1992 Aug; 31(30):6990-6. PubMed ID: 1637833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding.
    Jones ME; Lentz BR
    Biochemistry; 1986 Feb; 25(3):567-74. PubMed ID: 3754153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry.
    Mackey BM; Miles CA; Parsons SE; Seymour DA
    J Gen Microbiol; 1991 Oct; 137(10):2361-74. PubMed ID: 1722814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational diffusion of bovine prothrombin fragment 1 weakly bound to supported planar membranes: measurement by total internal reflection with fluorescence pattern photobleaching recovery.
    Huang Z; Pearce KH; Thompson NL
    Biophys J; 1994 Oct; 67(4):1754-66. PubMed ID: 7819508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR study of the thermal denaturation of alpha-actinin in its lipid-free and dioleoylphosphatidylglycerol-bound states and the central and N-terminal domains of alpha-actinin in D2O.
    Han X; Li G; Li G; Lin K
    Biochemistry; 1998 Jul; 37(30):10730-7. PubMed ID: 9692963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-dependent and calcium-independent interactions of prothrombin fragment 1 with phosphatidylglycerol/phosphatidylcholine unilamellar vesicles.
    Lentz BR; Alford DR; Jones ME; Dombrose FA
    Biochemistry; 1985 Nov; 24(24):6997-7005. PubMed ID: 3841009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Chong PL; Ravindra R; Khurana M; English V; Winter R
    Biophys J; 2005 Sep; 89(3):1841-9. PubMed ID: 15980181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of octyl-beta-thioglucopyranoside with lipid membranes.
    Wenk MR; Seelig J
    Biophys J; 1997 Nov; 73(5):2565-74. PubMed ID: 9370450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A differential scanning calorimetric study of the thermal denaturation of bovine beta-lactoglobulin. Thermal behaviour at temperatures up to 100 degrees C.
    de Wit JN; Swinkels GA
    Biochim Biophys Acta; 1980 Jul; 624(1):40-50. PubMed ID: 7407243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the collagen-like peptide (Pro-Pro-Gly)(10) confirm that the shape and position of the type I collagen denaturation endotherm is governed by the rate of helix unfolding.
    Miles CA; Bailey AJ
    J Mol Biol; 2004 Apr; 337(4):917-31. PubMed ID: 15033361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.