These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17425086)

  • 1. Local infiltration devices at parking sites--experimental assessment of temporal changes in hydraulic and contaminant removal capacity.
    Achleitner S; Engelhard C; Stegner U; Rauch W
    Water Sci Technol; 2007; 55(4):193-200. PubMed ID: 17425086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grassed swales for stormwater pollution control during rain and snowmelt.
    Bäckström M
    Water Sci Technol; 2003; 48(9):123-32. PubMed ID: 14703146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-site infiltration of road runoff using pervious pavements with subjacent infiltration trenches as source control strategy.
    Fach S; Dierkes C
    Water Sci Technol; 2011; 64(7):1388-97. PubMed ID: 22179634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and investigation of a pollution control pit for treatment of stormwater from metal roofs and traffic areas.
    Dierkes C; Göbel P; Lohmann M; Coldewey WG
    Water Sci Technol; 2006; 54(6-7):291-8. PubMed ID: 17120661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term hydraulic and pollution retention performance of infiltration systems.
    Le Coustumer S; Barraud S
    Water Sci Technol; 2007; 55(4):235-43. PubMed ID: 17425091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.
    Geronimo FK; Maniquiz-Redillas MC; Tobio JA; Kim LH
    Water Sci Technol; 2014; 69(12):2460-7. PubMed ID: 24960008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filter media for stormwater treatment and recycling: the influence of hydraulic properties of flow on pollutant removal.
    Hatt BE; Siriwardene N; Deletic A; Fletcher TD
    Water Sci Technol; 2006; 54(6-7):263-71. PubMed ID: 17120658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal evolution and spatial distribution of heavy metals in a stormwater infiltration basin--estimation of the mass of trapped pollutants.
    Le Coustumer S; Moura P; Barraud S; Clozel B; Varnier JC
    Water Sci Technol; 2007; 56(12):93-100. PubMed ID: 18075184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of grass swales for improving water quality from highway runoff.
    Stagge JH; Davis AP; Jamil E; Kim H
    Water Res; 2012 Dec; 46(20):6731-42. PubMed ID: 22463860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff.
    Maniquiz-Redillas MC; Kim LH
    Environ Technol; 2016 Sep; 37(18):2265-72. PubMed ID: 26862669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next generation swale design for stormwater runoff treatment: A comprehensive approach.
    Ekka SA; Rujner H; Leonhardt G; Blecken GT; Viklander M; Hunt WF
    J Environ Manage; 2021 Feb; 279():111756. PubMed ID: 33360437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term simulation of potentially toxic elements (PTEs) accumulation and breakthrough in infiltration-based stormwater management practices (SMPs).
    Behbahani A; Ryan RJ; McKenzie ER
    J Contam Hydrol; 2020 Oct; 234():103685. PubMed ID: 32799044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloid and heavy metal transport at landfill sites in direct contact with groundwater.
    Baumann T; Fruhstorfer P; Klein T; Niessner R
    Water Res; 2006 Aug; 40(14):2776-86. PubMed ID: 16820185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrological benefits of filtering swales for metal removal.
    Monrabal-Martinez C; Aberle J; Muthanna TM; Orts-Zamorano M
    Water Res; 2018 Nov; 145():509-517. PubMed ID: 30193194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of swale factors implicated in pollutant removal efficiency using a swale database.
    Fardel A; Peyneau PE; Béchet B; Lakel A; Rodriguez F
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1287-1302. PubMed ID: 30402696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies.
    Hong E; Seagren EA; Davis AP
    Water Environ Res; 2006 Feb; 78(2):141-55. PubMed ID: 16566522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffuse sources of heavy metals in the Rhine basin.
    Mohaupt V; Sieber U; van den Roovaart J; Verstappen CG; Langenfeld F; Braun M
    Water Sci Technol; 2001; 44(7):41-9. PubMed ID: 11724493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation.
    Lucke T; Nichols PWB
    Sci Total Environ; 2015 Dec; 536():784-792. PubMed ID: 26254078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of enviss™ stormwater filters: results of a laboratory trial.
    Bratières K; Schang C; Deletić A; McCarthy DT
    Water Sci Technol; 2012; 66(4):719-27. PubMed ID: 22766858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of design parameters on clogging of stormwater biofilters: a large-scale column study.
    Le Coustumer S; Fletcher TD; Deletic A; Barraud S; Poelsma P
    Water Res; 2012 Dec; 46(20):6743-52. PubMed ID: 22342313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.