BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 17425306)

  • 1. Protein binding to lanthanide(III) complexes can reduce the water exchange rate at the lanthanide.
    Zech SG; Eldredge HB; Lowe MP; Caravan P
    Inorg Chem; 2007 Apr; 46(9):3576-84. PubMed ID: 17425306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates.
    Venu AC; Nasser Din R; Rudszuck T; Picchetti P; Chakraborty P; Powell AK; Krämer S; Guthausen G; Ibrahim M
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-induced water 1H MR frequency shifts: contributions from magnetic susceptibility and exchange effects.
    Luo J; He X; d'Avignon DA; Ackerman JJ; Yablonskiy DA
    J Magn Reson; 2010 Jan; 202(1):102-8. PubMed ID: 19879785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Parameters Promoting High Relaxivity in Cluster-Nanocarrier Magnetic Resonance Imaging Contrast Agents.
    Lyons T; Kekedjian C; Glaser P; Ohlin CA; van Eldik R; Rodriguez O; Albanese C; Van Keuren E; Stoll SL
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36283049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Biphenyl-Functionalized Eu(2+)-Containing Cryptate with Albumin: Implications to Contrast Agents in Magnetic Resonance Imaging.
    Garcia J; Allen MJ
    Inorganica Chim Acta; 2012 Dec; 393():324-327. PubMed ID: 23162162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers.
    Wahsner J; Gale EM; Rodríguez-Rodríguez A; Caravan P
    Chem Rev; 2019 Jan; 119(2):957-1057. PubMed ID: 30350585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplifying the sensitivity of zinc(II) responsive MRI contrast agents by altering water exchange rates.
    Yu J; Martins AF; Preihs C; Clavijo Jordan V; Chirayil S; Zhao P; Wu Y; Nasr K; Kiefer GE; Sherry AD
    J Am Chem Soc; 2015 Nov; 137(44):14173-9. PubMed ID: 26462412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A (Fluoroalkyl)Guanidine Modulates the Relaxivity of a Phosphonate-Containing
    Wu X; Dawsey AC; Siriwardena-Mahanama BN; Allen MJ; Williams TJ
    J Fluor Chem; 2014 Dec; 168():177-183. PubMed ID: 25431503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR imaging probes: design and applications.
    Boros E; Gale EM; Caravan P
    Dalton Trans; 2015 Mar; 44(11):4804-4818. PubMed ID: 25376893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gd(III)-labeled peptide nanofibers for reporting on biomaterial localization in vivo.
    Preslar AT; Parigi G; McClendon MT; Sefick SS; Moyer TJ; Haney CR; Waters EA; MacRenaris KW; Luchinat C; Stupp SI; Meade TJ
    ACS Nano; 2014 Jul; 8(7):7325-32. PubMed ID: 24937195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of the Mn(II) hydration state in metal complexes and metalloproteins through 17O NMR line widths.
    Gale EM; Zhu J; Caravan P
    J Am Chem Soc; 2013 Dec; 135(49):18600-8. PubMed ID: 24088013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling fast water exchange to slow molecular tumbling in Gd3+ chelates: why faster is not always better.
    Avedano S; Botta M; Haigh JS; Longo DL; Woods M
    Inorg Chem; 2013 Aug; 52(15):8436-50. PubMed ID: 23841587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gd(DOTAla): a single amino acid Gd-complex as a modular tool for high relaxivity MR contrast agent development.
    Boros E; Polasek M; Zhang Z; Caravan P
    J Am Chem Soc; 2012 Dec; 134(48):19858-68. PubMed ID: 23157602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineered probes for molecular magnetic resonance imaging in the nervous system.
    Hsieh V; Jasanoff A
    ACS Chem Neurosci; 2012 Aug; 3(8):593-602. PubMed ID: 22896803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Nanospheres: Synergistic Nanoplatform-Based Probes for Multimodality Imaging.
    McDonald MA; Wang PC; Siegel EL
    Proc SPIE Int Soc Opt Eng; 2011 Jan; 7910():. PubMed ID: 22773942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure - relaxivity relationships among targeted MR contrast agents.
    Caravan P; Zhang Z
    Eur J Inorg Chem; 2012 Apr; 2012(12):1916-1923. PubMed ID: 22745568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical methods for characterizing magnetic resonance probes.
    Manus LM; Strauch RC; Hung AH; Eckermann AL; Meade TJ
    Anal Chem; 2012 Aug; 84(15):6278-87. PubMed ID: 22624599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serum albumin targeted, pH-dependent magnetic resonance relaxation agents.
    Moriggi L; Yaseen MA; Helm L; Caravan P
    Chemistry; 2012 Mar; 18(12):3675-86. PubMed ID: 22328098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High relaxivity magnetic resonance imaging contrast agents. Part 1. Impact of single donor atom substitution on relaxivity of serum albumin-bound gadolinium complexes.
    Dumas S; Jacques V; Sun WC; Troughton JS; Welch JT; Chasse JM; Schmitt-Willich H; Caravan P
    Invest Radiol; 2010 Oct; 45(10):600-12. PubMed ID: 20808235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-relaxivity magnetic resonance imaging contrast agents. Part 2. Optimization of inner- and second-sphere relaxivity.
    Jacques V; Dumas S; Sun WC; Troughton JS; Greenfield MT; Caravan P
    Invest Radiol; 2010 Oct; 45(10):613-24. PubMed ID: 20808234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.