These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17425366)

  • 1. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition.
    Hiemstra C; Aa LJ; Zhong Z; Dijkstra PJ; Feijen J
    Biomacromolecules; 2007 May; 8(5):1548-56. PubMed ID: 17425366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels.
    Hiemstra C; Zhong Z; van Steenbergen MJ; Hennink WE; Feijen J
    J Control Release; 2007 Sep; 122(1):71-8. PubMed ID: 17658651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates.
    Jin R; Hiemstra C; Zhong Z; Feijen J
    Biomaterials; 2007 Jun; 28(18):2791-800. PubMed ID: 17379300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration.
    Xu G; Wang X; Deng C; Teng X; Suuronen EJ; Shen Z; Zhong Z
    Acta Biomater; 2015 Mar; 15():55-64. PubMed ID: 25545323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers.
    Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z
    J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization.
    Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J
    J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.
    Wang X; Li Z; Shi T; Zhao P; An K; Lin C; Liu H
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():21-30. PubMed ID: 28183600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition.
    Fu Y; Kao WJ
    J Biomed Mater Res A; 2011 Aug; 98(2):201-11. PubMed ID: 21548071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of precursor and cross-linking parameters on the properties of dextran-allyl isocyanate-ethylamine/poly(ethylene glycol diacrylate) biodegradable hydrogels and their release of ovalbumin.
    Sun G; Chen FA; Chu CC
    J Biomater Sci Polym Ed; 2009; 20(14):2003-22. PubMed ID: 19874674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A newly developed chemically crosslinked dextran-poly(ethylene glycol) hydrogel for cartilage tissue engineering.
    Jukes JM; van der Aa LJ; Hiemstra C; van Veen T; Dijkstra PJ; Zhong Z; Feijen J; van Blitterswijk CA; de Boer J
    Tissue Eng Part A; 2010 Feb; 16(2):565-73. PubMed ID: 19737051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dextran-based self-healing hydrogels formed by reversible diels-alder reaction under physiological conditions.
    Wei Z; Yang JH; Du XJ; Xu F; Zrinyi M; Osada Y; Li F; Chen YM
    Macromol Rapid Commun; 2013 Sep; 34(18):1464-70. PubMed ID: 23929621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release of a model protein from enzymatically degrading dextran microspheres.
    Franssen O; Stenekes RJ; Hennink WE
    J Control Release; 1999 May; 59(2):219-28. PubMed ID: 10332056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
    Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC
    Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates.
    Buwalda SJ; Bethry A; Hunger S; Kandoussi S; Coudane J; Nottelet B
    Eur J Pharm Biopharm; 2019 Jun; 139():232-239. PubMed ID: 30954658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres.
    Franssen O; Vandervennet L; Roders P; Hennink WE
    J Control Release; 1999 Aug; 60(2-3):211-21. PubMed ID: 10425327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair.
    Jin R; Moreira Teixeira LS; Krouwels A; Dijkstra PJ; van Blitterswijk CA; Karperien M; Feijen J
    Acta Biomater; 2010 Jun; 6(6):1968-77. PubMed ID: 20025999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic carbohydrate substrates of tunable properties using immobilized dextran hydrogels.
    Lee MH; Boettiger D; Composto RJ
    Biomacromolecules; 2008 Sep; 9(9):2315-21. PubMed ID: 18686998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition.
    Zhou Y; Nie W; Zhao J; Yuan X
    J Mater Sci Mater Med; 2013 Oct; 24(10):2277-86. PubMed ID: 23797826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC).
    Hodgson SM; Bakaic E; Stewart SA; Hoare T; Adronov A
    Biomacromolecules; 2016 Mar; 17(3):1093-100. PubMed ID: 26842783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.