BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 17425579)

  • 1. Seasonal variations of clock gene expression in the suprachiasmatic nuclei and pars tuberalis of the European hamster (Cricetus cricetus).
    Tournier BB; Dardente H; Simonneaux V; Vivien-Roels B; Pévet P; Masson-Pévet M; Vuillez P
    Eur J Neurosci; 2007 Mar; 25(5):1529-36. PubMed ID: 17425579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Johnston JD; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2005 Jun; 21(11):2967-74. PubMed ID: 15978008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat.
    Agez L; Laurent V; Guerrero HY; Pévet P; Masson-Pévet M; Gauer F
    J Pineal Res; 2009 Jan; 46(1):95-105. PubMed ID: 19090912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis.
    von Gall C; Weaver DR; Moek J; Jilg A; Stehle JH; Korf HW
    Ann N Y Acad Sci; 2005 Apr; 1040():508-11. PubMed ID: 15891103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer.
    Lincoln G; Messager S; Andersson H; Hazlerigg D
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13890-5. PubMed ID: 12374857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily torpor alters multiple gene expression in the suprachiasmatic nucleus and pineal gland of the Djungarian hamster (Phodopus sungorus).
    Herwig A; Revel F; Saboureau M; Pévet P; Steinlechner S
    Chronobiol Int; 2006; 23(1-2):269-76. PubMed ID: 16687300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for an endogenous per1- and ICER-independent seasonal timer in the hamster pituitary gland.
    Johnston JD; Cagampang FR; Stirland JA; Carr AJ; White MR; Davis JR; Loudon AS
    FASEB J; 2003 May; 17(8):810-5. PubMed ID: 12724339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development.
    Kováciková Z; Sládek M; Bendová Z; Illnerová H; Sumová A
    J Biol Rhythms; 2006 Apr; 21(2):140-8. PubMed ID: 16603678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus.
    Kováciková Z; Sládek M; Laurinová K; Bendová Z; Illnerová H; Sumová A
    Brain Res; 2005 Dec; 1064(1-2):83-9. PubMed ID: 16289486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression in the suprachiasmatic nuclei and the photoperiodic time integration.
    Tournier BB; Birkenstock J; Pévet P; Vuillez P
    Neuroscience; 2009 Apr; 160(1):240-7. PubMed ID: 19409208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin induces gene-specific effects on rhythmic mRNA expression in the pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Wagner GC; Johnston JD; Tournier BB; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2007 Jan; 25(2):485-90. PubMed ID: 17284190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei.
    Agez L; Laurent V; Pévet P; Masson-Pévet M; Gauer F
    Neuroscience; 2007 Jan; 144(2):522-30. PubMed ID: 17067745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental expression of clock genes in the Syrian hamster.
    Li X; Davis FC
    Brain Res Dev Brain Res; 2005 Aug; 158(1-2):31-40. PubMed ID: 15987658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin feedback on clock genes: a theory involving the proteasome.
    Vriend J; Reiter RJ
    J Pineal Res; 2015 Jan; 58(1):1-11. PubMed ID: 25369242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The photoperiod entrains the molecular clock of the rat pineal.
    Engel L; Lorenzkowski V; Langer C; Rohleder N; Spessert R
    Eur J Neurosci; 2005 Apr; 21(8):2297-304. PubMed ID: 15869528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal pattern of clock gene expression in the hypothalamus of the newborn rabbit.
    Caldelas I; Tejadilla D; González B; Montúfar R; Hudson R
    Neuroscience; 2007 Jan; 144(2):395-401. PubMed ID: 17055660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus).
    Hanon EA; Routledge K; Dardente H; Masson-Pévet M; Morgan PJ; Hazlerigg DG
    J Neuroendocrinol; 2010 Jan; 22(1):51-5. PubMed ID: 19912472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling.
    Jilg A; Moek J; Weaver DR; Korf HW; Stehle JH; von Gall C
    Eur J Neurosci; 2005 Dec; 22(11):2845-54. PubMed ID: 16324119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does a melatonin-dependent circadian oscillator in the pars tuberalis drive prolactin seasonal rhythmicity?
    Dardente H
    J Neuroendocrinol; 2007 Aug; 19(8):657-66. PubMed ID: 17620107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis.
    Lincoln GA; Andersson H; Hazlerigg D
    J Neuroendocrinol; 2003 Apr; 15(4):390-7. PubMed ID: 12622839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.