These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 17425590)
1. Significance of error-avoiding mechanisms for oxidative DNA damage in carcinogenesis. Tsuzuki T; Nakatsu Y; Nakabeppu Y Cancer Sci; 2007 Apr; 98(4):465-70. PubMed ID: 17425590 [TBL] [Abstract][Full Text] [Related]
2. Functional cooperation of Ogg1 and Mutyh in preventing G: C-->T: a transversions in mice. Isogawa A Fukuoka Igaku Zasshi; 2004 Jan; 95(1):17-30. PubMed ID: 15031996 [TBL] [Abstract][Full Text] [Related]
3. MTH1 as a nucleotide pool sanitizing enzyme: Friend or foe? Nakabeppu Y; Ohta E; Abolhassani N Free Radic Biol Med; 2017 Jun; 107():151-158. PubMed ID: 27833032 [TBL] [Abstract][Full Text] [Related]
4. The defense mechanisms in mammalian cells against oxidative damage in nucleic acids and their involvement in the suppression of mutagenesis and cell death. Nakabeppu Y; Tsuchimoto D; Furuichi M; Sakumi K Free Radic Res; 2004 May; 38(5):423-9. PubMed ID: 15293549 [TBL] [Abstract][Full Text] [Related]
5. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Boiteux S; Coste F; Castaing B Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453 [TBL] [Abstract][Full Text] [Related]
6. Modulation of oxidative mutagenesis and carcinogenesis by polymorphic forms of human DNA repair enzymes. Nohmi T; Kim SR; Yamada M Mutat Res; 2005 Dec; 591(1-2):60-73. PubMed ID: 16081110 [TBL] [Abstract][Full Text] [Related]
7. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Nakabeppu Y; Sakumi K; Sakamoto K; Tsuchimoto D; Tsuzuki T; Nakatsu Y Biol Chem; 2006 Apr; 387(4):373-9. PubMed ID: 16606334 [TBL] [Abstract][Full Text] [Related]
8. Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei. Nakabeppu Y; Tsuchimoto D; Ichinoe A; Ohno M; Ide Y; Hirano S; Yoshimura D; Tominaga Y; Furuichi M; Sakumi K Ann N Y Acad Sci; 2004 Apr; 1011():101-11. PubMed ID: 15126288 [TBL] [Abstract][Full Text] [Related]
9. [GO System, a DNA Repair Pathway to Cope with Oxidative Damage]. Endutkin AV; Zharkov DO Mol Biol (Mosk); 2021; 55(2):223-242. PubMed ID: 33871437 [TBL] [Abstract][Full Text] [Related]
10. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair. Sheng Z; Oka S; Tsuchimoto D; Abolhassani N; Nomaru H; Sakumi K; Yamada H; Nakabeppu Y J Clin Invest; 2012 Dec; 122(12):4344-61. PubMed ID: 23143307 [TBL] [Abstract][Full Text] [Related]
11. MTH1 inhibition synergizes with ROS-inducing agents to trigger cervical cancer cells undergoing parthanatos. Li C; Xue Y; Wu J; Zhang L; Yang T; Ai M; Han J; Zheng X; Wang R; Boldogh I; Ba X Biochim Biophys Acta Mol Basis Dis; 2024 Jun; 1870(5):167190. PubMed ID: 38657912 [TBL] [Abstract][Full Text] [Related]
12. MTH1 and OGG1 maintain a low level of 8-oxoguanine in Alzheimer's brain, and prevent the progression of Alzheimer's pathogenesis. Oka S; Leon J; Sakumi K; Abolhassani N; Sheng Z; Tsuchimoto D; LaFerla FM; Nakabeppu Y Sci Rep; 2021 Mar; 11(1):5819. PubMed ID: 33758207 [TBL] [Abstract][Full Text] [Related]
13. Repair of oxidative DNA damage: mechanisms and functions. Lu AL; Li X; Gu Y; Wright PM; Chang DY Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789 [TBL] [Abstract][Full Text] [Related]
14. Analysis of MTH1 gene function in mice with targeted mutagenesis. Tsuzuki T; Egashira A; Kura S Mutat Res; 2001 Jun; 477(1-2):71-8. PubMed ID: 11376688 [TBL] [Abstract][Full Text] [Related]
15. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. van der Kemp PA; Thomas D; Barbey R; de Oliveira R; Boiteux S Proc Natl Acad Sci U S A; 1996 May; 93(11):5197-202. PubMed ID: 8643552 [TBL] [Abstract][Full Text] [Related]
16. MUTYH prevents OGG1 or APEX1 from inappropriately processing its substrate or reaction product with its C-terminal domain. Tominaga Y; Ushijima Y; Tsuchimoto D; Mishima M; Shirakawa M; Hirano S; Sakumi K; Nakabeppu Y Nucleic Acids Res; 2004; 32(10):3198-211. PubMed ID: 15199168 [TBL] [Abstract][Full Text] [Related]
17. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Hazra TK; Hill JW; Izumi T; Mitra S Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297 [TBL] [Abstract][Full Text] [Related]
18. Oxidative damage in nucleic acids and Parkinson's disease. Nakabeppu Y; Tsuchimoto D; Yamaguchi H; Sakumi K J Neurosci Res; 2007 Apr; 85(5):919-34. PubMed ID: 17279544 [TBL] [Abstract][Full Text] [Related]
19. Cellular levels of 8-oxoguanine in either DNA or the nucleotide pool play pivotal roles in carcinogenesis and survival of cancer cells. Nakabeppu Y Int J Mol Sci; 2014 Jul; 15(7):12543-57. PubMed ID: 25029543 [TBL] [Abstract][Full Text] [Related]
20. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Tajiri T; Maki H; Sekiguchi M Mutat Res; 1995 May; 336(3):257-67. PubMed ID: 7739614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]