These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 17426756)
1. Population structure of Sclerotinia sclerotiorum in an Australian canola field at flowering and stem-infection stages of the disease cycle. Sexton AC; Whitten AR; Howlett BJ Genome; 2006 Nov; 49(11):1408-15. PubMed ID: 17426756 [TBL] [Abstract][Full Text] [Related]
2. Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Sexton AC; Howlett BJ Curr Genet; 2004 Dec; 46(6):357-65. PubMed ID: 15549318 [TBL] [Abstract][Full Text] [Related]
3. Genetic Variation of Sclerotinia sclerotiorum from Multiple Crops in the North Central United States. Aldrich-Wolfe L; Travers S; Nelson BD PLoS One; 2015; 10(9):e0139188. PubMed ID: 26417989 [TBL] [Abstract][Full Text] [Related]
4. Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Attanayake RN; Carter PA; Jiang D; Del Río-Mendoza L; Chen W Phytopathology; 2013 Jul; 103(7):750-61. PubMed ID: 23464902 [TBL] [Abstract][Full Text] [Related]
5. Sources of genomic diversity in the self-fertile plant pathogen, Sclerotinia sclerotiorum, and consequences for resistance breeding. Buchwaldt L; Garg H; Puri KD; Durkin J; Adam J; Harrington M; Liabeuf D; Davies A; Hegedus DD; Sharpe AG; Gali KK PLoS One; 2022; 17(2):e0262891. PubMed ID: 35130285 [TBL] [Abstract][Full Text] [Related]
6. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Joshi RK; Megha S; Rahman MH; Basu U; Kav NN Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030 [TBL] [Abstract][Full Text] [Related]
7. Genetic diversity and pathogenicity differentiation of Sclerotinia sclerotiorum on rapeseed (Brassica napus L.) in Anhui Province, China. Xu DF; Li XL; Pan YM; Dai YL; Li P; Chen FX; Zhang HJ; Guo M; Gao ZM Genet Mol Res; 2014 Dec; 13(4):10704-13. PubMed ID: 25526191 [TBL] [Abstract][Full Text] [Related]
8. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110 [TBL] [Abstract][Full Text] [Related]
10. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Ziaei M; Motallebi M; Zamani MR; Panjeh NZ Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090 [TBL] [Abstract][Full Text] [Related]
11. Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. Savchuk S; Dilantha Fernando WG FEMS Microbiol Ecol; 2004 Sep; 49(3):379-88. PubMed ID: 19712288 [TBL] [Abstract][Full Text] [Related]
12. Genetic Diversity and Population Structure of Cucurbit Gummy Stem Blight Fungi Based on Microsatellite Markers. Brewer MT; Rath M; Li HX Phytopathology; 2015 Jun; 105(6):815-24. PubMed ID: 25710205 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. Chittem K; Yajima WR; Goswami RS; Del Río Mendoza LE PLoS One; 2020; 15(3):e0229844. PubMed ID: 32160211 [TBL] [Abstract][Full Text] [Related]
14. Effective, Consistent, and Rapid Noncontact Application Methods for Seedling Basal Stem Infection by Han VC; Michael PJ; Crockett R; Swift B; Bennett SJ Plant Dis; 2024 Aug; 108(8):2303-2308. PubMed ID: 38537136 [No Abstract] [Full Text] [Related]
15. Carpogenic Germinability of Diverse Michael PJ; Lui KY; Thomson LL; Stefanova K; Bennett SJ Plant Dis; 2020 Nov; 104(11):2891-2897. PubMed ID: 32924875 [TBL] [Abstract][Full Text] [Related]
16. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus. Uloth MB; Clode PL; You MP; Barbetti MJ Ann Bot; 2016 Jan; 117(1):79-95. PubMed ID: 26420204 [TBL] [Abstract][Full Text] [Related]
17. Genetic structure of a population of the fungus Leptosphaeria maculans in a disease nursery of Brassica napus in Australia. Hayden HL; Howlett BJ Curr Genet; 2005 Aug; 48(2):142-9. PubMed ID: 16032414 [TBL] [Abstract][Full Text] [Related]
18. Development and characterization of microsatellite markers of the fungal plant pathogen Sclerotinia trifoliorum. Njambere EN; Vandemark G; Chen W Genome; 2010 Jun; 53(6):494-500. PubMed ID: 20555438 [TBL] [Abstract][Full Text] [Related]
19. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. Liang Y; Srivastava S; Rahman MH; Strelkov SE; Kav NN J Agric Food Chem; 2008 Mar; 56(6):1963-76. PubMed ID: 18290614 [TBL] [Abstract][Full Text] [Related]