These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17426837)

  • 21. Mechanisms of TLR9 activation.
    Latz E; Visintin A; Espevik T; Golenbock DT
    J Endotoxin Res; 2004; 10(6):406-12. PubMed ID: 15588423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice.
    Spies B; Hochrein H; Vabulas M; Huster K; Busch DH; Schmitz F; Heit A; Wagner H
    J Immunol; 2003 Dec; 171(11):5908-12. PubMed ID: 14634101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulatory effect of fragments from transcribed region of ribosomal repeat on human peripheral blood lymphocytes.
    Veiko NN; Kalashnikova EA; Kokarovtseva SN; Kostyuk SV; Ermakov AV; Ivanova SM; Ryazantseva TA; Egolina NA; Lyapunova NA; Spitkovskii DM
    Bull Exp Biol Med; 2006 Oct; 142(4):428-32. PubMed ID: 17415429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CpG motifs to modulate innate and adaptive immune responses.
    Vollmer J
    Int Rev Immunol; 2006; 25(3-4):125-34. PubMed ID: 16818368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toll-like receptor 9: modulation of recognition and cytokine induction by novel synthetic CpG DNAs.
    Kandimalla ER; Zhu FG; Bhagat L; Yu D; Agrawal S
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):654-8. PubMed ID: 12773176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selectivity of Human TLR9 for Double CpG Motifs and Implications for the Recognition of Genomic DNA.
    Pohar J; Yamamoto C; Fukui R; Cajnko MM; Miyake K; Jerala R; BenĨina M
    J Immunol; 2017 Mar; 198(5):2093-2104. PubMed ID: 28115525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autoreactive B cells discriminate CpG-rich and CpG-poor DNA and this response is modulated by IFN-alpha.
    Uccellini MB; Busconi L; Green NM; Busto P; Christensen SR; Shlomchik MJ; Marshak-Rothstein A; Viglianti GA
    J Immunol; 2008 Nov; 181(9):5875-84. PubMed ID: 18941176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of base sequence on the immunostimulatory properties of DNA.
    Pisetsky DS
    Immunol Res; 1999; 19(1):35-46. PubMed ID: 10374694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of CpG motifs to the immunogenicity of DNA vaccines.
    Klinman DM; Yamshchikov G; Ishigatsubo Y
    J Immunol; 1997 Apr; 158(8):3635-9. PubMed ID: 9103425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in the development of immunostimulatory oligonucleotides.
    Uhlmann E; Vollmer J
    Curr Opin Drug Discov Devel; 2003 Mar; 6(2):204-17. PubMed ID: 12669456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CD40-dependent and -independent activation of human tonsil B cells by CpG oligodeoxynucleotides.
    Gantner F; Hermann P; Nakashima K; Matsukawa S; Sakai K; Bacon KB
    Eur J Immunol; 2003 Jun; 33(6):1576-85. PubMed ID: 12778475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA and its cationic lipid complexes induce CpG motif-dependent activation of murine dendritic cells.
    Yoshinaga T; Yasuda K; Ogawa Y; Nishikawa M; Takakura Y
    Immunology; 2007 Mar; 120(3):295-302. PubMed ID: 17199803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CpG oligodeoxynucleotides as DNA adjuvants in vertebrates and their applications in immunotherapy.
    Chaung HC
    Int Immunopharmacol; 2006 Oct; 6(10):1586-96. PubMed ID: 16919831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oligodeoxynucleotides lacking CpG dinucleotides mediate Toll-like receptor 9 dependent T helper type 2 biased immune stimulation.
    Vollmer J; Weeratna RD; Jurk M; Samulowitz U; McCluskie MJ; Payette P; Davis HL; Schetter C; Krieg AM
    Immunology; 2004 Oct; 113(2):212-23. PubMed ID: 15379982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Circulating in blood plasma cell-free DNA in the pathogenesis of ischemic stroke: the role of the transcribed region of ribosomal repeat].
    Konorova IL; Maximova MIu; Smirnova IN; Bolotova TA; Ershova ES; Veiko NN; Suslina ZA
    Patol Fiziol Eksp Ter; 2014; (2):13-23. PubMed ID: 25318157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides.
    Roberts TL; Sweet MJ; Hume DA; Stacey KJ
    J Immunol; 2005 Jan; 174(2):605-8. PubMed ID: 15634876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oligodeoxynucleotides containing CpG motifs can induce T cell-dependent arthritis in rats.
    Svelander L; Erlandsson Harris H; Lorentzen JC; Trollmo C; Klareskog L; Bucht A
    Arthritis Rheum; 2004 Jan; 50(1):297-304. PubMed ID: 14730628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial DNA delays human eosinophil apoptosis.
    Ilmarinen P; Hasala H; Sareila O; Moilanen E; Kankaanranta H
    Pulm Pharmacol Ther; 2009 Jun; 22(3):167-76. PubMed ID: 19073274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of CpG s-ODNs, chromatin immune complexes, and dsDNA fragment immune complexes in the TLR9-dependent activation of rheumatoid factor B cells.
    Marshak-Rothstein A; Busconi L; Lau CM; Tabor AS; Leadbetter EA; Akira S; Krieg AM; Lipford GB; Viglianti GA; Rifkin IR
    J Endotoxin Res; 2004; 10(4):247-51. PubMed ID: 15373969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Toll-like receptor recognizes bacterial DNA.
    Hemmi H; Takeuchi O; Kawai T; Kaisho T; Sato S; Sanjo H; Matsumoto M; Hoshino K; Wagner H; Takeda K; Akira S
    Nature; 2000 Dec; 408(6813):740-5. PubMed ID: 11130078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.