These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17427028)

  • 1. Prediction of complex traits based on the epistasis of multiple haplotypes.
    Liang KH; Wu YJ
    J Hum Genet; 2007; 52(5):456-463. PubMed ID: 17427028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical procedure to map high-order epistasis for complex traits.
    Pang X; Wang Z; Yap JS; Wang J; Zhu J; Bo W; Lv Y; Xu F; Zhou T; Peng S; Shen D; Wu R
    Brief Bioinform; 2013 May; 14(3):302-14. PubMed ID: 22723459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the genetic architecture of complex traits in experimental populations.
    Yang J; Zhu J; Williams RW
    Bioinformatics; 2007 Jun; 23(12):1527-36. PubMed ID: 17459962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Response Surface Methods To Determine Conditions for Optimal Genomic Prediction.
    Howard R; Carriquiry AL; Beavis WD
    G3 (Bethesda); 2017 Sep; 7(9):3103-3113. PubMed ID: 28720710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals.
    Morgante F; Huang W; Maltecca C; Mackay TFC
    Heredity (Edinb); 2018 Jun; 120(6):500-514. PubMed ID: 29426878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MUSE: A MULTI-LOCUS SAMPLING-BASED EPISTASIS ALGORITHM FOR QUANTITATIVE GENETIC TRAIT PREDICTION.
    He D; Parida L
    Pac Symp Biocomput; 2017; 22():426-437. PubMed ID: 27896995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage genome-wide search for epistasis with implementation to Recombinant Inbred Lines (RIL) populations.
    Goldstein P; Korol AB; Reiner-Benaim A
    PLoS One; 2014; 9(12):e115680. PubMed ID: 25536193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of SNP epistasis effects of quantitative traits using an extended Kempthorne model.
    Mao Y; London NR; Ma L; Dvorkin D; Da Y
    Physiol Genomics; 2006 Dec; 28(1):46-52. PubMed ID: 16940430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary footprint of epistasis.
    Pedruzzi G; Barlukova A; Rouzine IM
    PLoS Comput Biol; 2018 Sep; 14(9):e1006426. PubMed ID: 30222748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haplotype-Based Genome-Wide Prediction Models Exploit Local Epistatic Interactions Among Markers.
    Jiang Y; Schmidt RH; Reif JC
    G3 (Bethesda); 2018 May; 8(5):1687-1699. PubMed ID: 29549092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of triple test cross for detecting epistasis with marker information.
    Zhu C; Zhang R
    Heredity (Edinb); 2007 Jun; 98(6):401-10. PubMed ID: 17392709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PyToxo: a Python tool for calculating penetrance tables of high-order epistasis models.
    González-Seoane B; Ponte-Fernández C; González-Domínguez J; Martín MJ
    BMC Bioinformatics; 2022 Apr; 23(1):117. PubMed ID: 35366804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic prediction with epistasis models: on the marker-coding-dependent performance of the extended GBLUP and properties of the categorical epistasis model (CE).
    Martini JW; Gao N; Cardoso DF; Wimmer V; Erbe M; Cantet RJ; Simianer H
    BMC Bioinformatics; 2017 Jan; 18(1):3. PubMed ID: 28049412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-locus penetrance variance analysis method for association study in complex diseases.
    Sun X; Zhang Z; Zhang Y; Zhang X; Li Y
    Hum Hered; 2005; 60(3):143-9. PubMed ID: 16319491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for epistasis in linkage analysis of general pedigrees.
    Sung YJ; Wijsman EM
    Hum Hered; 2007; 63(2):144-52. PubMed ID: 17283443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic prediction of genetic merit using LD-based haplotypes in the Nordic Holstein population.
    Cuyabano BC; Su G; Lund MS
    BMC Genomics; 2014 Dec; 15(1):1171. PubMed ID: 25539631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SHEsisPlus, a toolset for genetic studies on polyploid species.
    Shen J; Li Z; Chen J; Song Z; Zhou Z; Shi Y
    Sci Rep; 2016 Apr; 6():24095. PubMed ID: 27048905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Little epistasis for anxiety-related measures in the DeFries strains of laboratory mice.
    Flint J; DeFries JC; Henderson ND
    Mamm Genome; 2004 Feb; 15(2):77-82. PubMed ID: 15058379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy to apply quantitative epistasis analysis on developmental traits.
    Labocha MK; Yuan W; Aleman-Meza B; Zhong W
    BMC Genet; 2017 May; 18(1):42. PubMed ID: 28506208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.