BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17427814)

  • 1. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.
    Vansuyt G; Robin A; Briat JF; Curie C; Lemanceau P
    Mol Plant Microbe Interact; 2007 Apr; 20(4):441-7. PubMed ID: 17427814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.
    Durrett TP; Connolly EL; Rogers EE
    Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.
    Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N
    Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions.
    Trapet P; Avoscan L; Klinguer A; Pateyron S; Citerne S; Chervin C; Mazurier S; Lemanceau P; Wendehenne D; Besson-Bard A
    Plant Physiol; 2016 May; 171(1):675-93. PubMed ID: 26956666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection.
    Segond D; Dellagi A; Lanquar V; Rigault M; Patrit O; Thomine S; Expert D
    Plant J; 2009 Apr; 58(2):195-207. PubMed ID: 19121106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.
    Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G
    Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana.
    Nishida S; Tsuzuki C; Kato A; Aisu A; Yoshida J; Mizuno T
    Plant Cell Physiol; 2011 Aug; 52(8):1433-42. PubMed ID: 21742768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitated Fe Nutrition by Phenolic Compounds Excreted by the Arabidopsis ABCG37/PDR9 Transporter Requires the IRT1/FRO2 High-Affinity Root Fe(2+) Transport System.
    Fourcroy P; Tissot N; Gaymard F; Briat JF; Dubos C
    Mol Plant; 2016 Mar; 9(3):485-488. PubMed ID: 26415695
    [No Abstract]   [Full Text] [Related]  

  • 11. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms.
    Zhang H; Sun Y; Xie X; Kim MS; Dowd SE; Paré PW
    Plant J; 2009 May; 58(4):568-77. PubMed ID: 19154225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An MYB transcription factor from Malus xiaojinensis has a potential role in iron nutrition.
    Shen J; Xu X; Li T; Cao D; Han Z
    J Integr Plant Biol; 2008 Oct; 50(10):1300-6. PubMed ID: 19017117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis.
    Nishida S; Aisu A; Mizuno T
    Plant Signal Behav; 2012 Mar; 7(3):329-31. PubMed ID: 22476458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco.
    Robin A; Mazurier S; Mougel C; Vansuyt G; Corberand T; Meyer JM; Lemanceau P
    Environ Microbiol; 2007 Jul; 9(7):1724-37. PubMed ID: 17564606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis.
    Shanmugam V; Wang YW; Tsednee M; Karunakaran K; Yeh KC
    Plant J; 2015 Nov; 84(3):464-77. PubMed ID: 26333047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.
    Eroglu S; Meier B; von Wirén N; Peiter E
    Plant Physiol; 2016 Feb; 170(2):1030-45. PubMed ID: 26668333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function.
    Quintana J; Bernal M; Scholle M; Holländer-Czytko H; Nguyen NT; Piotrowski M; Mendoza-Cózatl DG; Haydon MJ; Krämer U
    Plant J; 2022 Feb; 109(4):992-1013. PubMed ID: 34839543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.
    Séguéla M; Briat JF; Vert G; Curie C
    Plant J; 2008 Jul; 55(2):289-300. PubMed ID: 18397377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.
    Thomine S; Lelièvre F; Debarbieux E; Schroeder JI; Barbier-Brygoo H
    Plant J; 2003 Jun; 34(5):685-95. PubMed ID: 12787249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.