BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 17427954)

  • 1. Effect of thermal stress on early and late passaged mouse lens epithelial cells.
    Bagchi M; Besser D; Reddy TR; Skoff R; Maisel H
    J Cell Biochem; 2007 Nov; 102(4):1036-42. PubMed ID: 17427954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of exogenous stress on the tissue-cultured mouse lens epithelial cells.
    Bagchi M; Katar M; Maisel H
    J Cell Biochem; 2002; 86(2):302-6. PubMed ID: 12111999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones.
    Zhang Y; Huang L; Zhang J; Moskophidis D; Mivechi NF
    J Cell Biochem; 2002; 86(2):376-93. PubMed ID: 12112007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lens epithelium-derived growth factor: increased resistance to thermal and oxidative stresses.
    Singh DP; Ohguro N; Chylack LT; Shinohara T
    Invest Ophthalmol Vis Sci; 1999 Jun; 40(7):1444-51. PubMed ID: 10359326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prostaglandins stimulate the stress-induced synthesis of hsp27 and alpha B crystallin.
    Ito H; Okamoto K; Kato K
    J Cell Physiol; 1997 Mar; 170(3):255-62. PubMed ID: 9066782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins.
    Gomer CJ; Ryter SW; Ferrario A; Rucker N; Wong S; Fisher AM
    Cancer Res; 1996 May; 56(10):2355-60. PubMed ID: 8625311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; WoliƄski J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuated expression of 70-kDa heat shock protein in WI-38 human fibroblasts during aging in vitro.
    Bonelli MA; Alfieri RR; Petronini PG; Brigotti M; Campanini C; Borghetti AF
    Exp Cell Res; 1999 Oct; 252(1):20-32. PubMed ID: 10502396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression of heat shock protein 70 decreases with age in lymphocytes from rats and rhesus monkeys.
    Pahlavani MA; Harris MD; Moore SA; Weindruch R; Richardson A
    Exp Cell Res; 1995 May; 218(1):310-8. PubMed ID: 7737368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the constitutive pig ovary heat shock chaperone machinery and its response to acute thermal stress or to seasonal variations.
    Pennarossa G; Maffei S; Rahman MM; Berruti G; Brevini TA; Gandolfi F
    Biol Reprod; 2012 Nov; 87(5):119. PubMed ID: 23018186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of heat shock transcription factors and heat shock protein 72 in rat retina after intravitreal injection of low dose N-methyl-D-aspartate.
    Ahn J; Piri N; Caprioli J; Munemasa Y; Kim SH; Kwong JM
    Neurosci Lett; 2008 Mar; 433(1):11-6. PubMed ID: 18242848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response.
    Shamovsky I; Gershon D
    Mech Ageing Dev; 2004; 125(10-11):767-75. PubMed ID: 15541771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury.
    Christians ES; Yan LJ; Benjamin IJ
    Crit Care Med; 2002 Jan; 30(1 Suppl):S43-50. PubMed ID: 11782560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.
    Manwell LA; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower heat shock factor activation and binding and faster rate of HSP-70A messenger RNA turnover in heat sensitive human leukemias.
    Mivechi NF; Ouyang H; Hahn GM
    Cancer Res; 1992 Dec; 52(24):6815-22. PubMed ID: 1458470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A heat shock transcription factor like protein in the nuclear matrix compartment of the tissue cultured mammalian lens epithelial cell.
    Bagchi M; Katar M; Maisel H
    J Cell Biochem; 2001; 80(3):382-7. PubMed ID: 11135369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermotolerance expression in mitotic CHO cells without increased translation of heat shock proteins.
    Borrelli MJ; Stafford DM; Karczewski LA; Rausch CM; Lee YJ; Corry PM
    J Cell Physiol; 1996 Dec; 169(3):420-8. PubMed ID: 8952691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells.
    Hansen RK; Oesterreich S; Lemieux P; Sarge KD; Fuqua SA
    Biochem Biophys Res Commun; 1997 Oct; 239(3):851-6. PubMed ID: 9367858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a role of heat-shock proteins in proliferation after heat treatment of synchronized mouse neuroblastoma cells.
    van Dongen G; van Wijk R
    Radiat Res; 1988 Feb; 113(2):252-67. PubMed ID: 3340732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.