These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17428049)

  • 1. Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study.
    Tejero I; Gonzalez-García N; Gonzalez-Lafont A; Lluch JM
    J Am Chem Soc; 2007 May; 129(18):5846-54. PubMed ID: 17428049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inactivation of lipid peroxide radical by quercetin. A theoretical insight.
    Chiodo SG; Leopoldini M; Russo N; Toscano M
    Phys Chem Chem Phys; 2010 Jul; 12(27):7662-70. PubMed ID: 20596589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The comparison of effect of catechins and green tea extract on oxidative modification of LDL in vitro.
    Ostrowska J; Skrzydlewska E
    Adv Med Sci; 2006; 51():298-303. PubMed ID: 17357329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical role of deep hydrogen tunneling to accelerate the antioxidant reaction of ubiquinol and vitamin E.
    Inagaki T; Yamamoto T
    J Phys Chem B; 2014 Jan; 118(4):937-50. PubMed ID: 24367903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of anharmonicity, recrossing effects, and quantum mechanical tunneling in transition state theory with semiclassical tunneling. A test case: the H2 + Cl hydrogen abstraction reaction.
    Sansón JA; Sánchez ML; Corchado JC
    J Phys Chem A; 2006 Jan; 110(2):589-99. PubMed ID: 16405331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Dependent radical scavenging capacity of green tea catechins.
    Muzolf M; Szymusiak H; Gliszczyńska-Swigło A; Rietjens IM; Tyrakowska B
    J Agric Food Chem; 2008 Feb; 56(3):816-23. PubMed ID: 18179168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical evaluation of the factors determining the effect of intramolecular hydrogen bonding on the O-H bond dissociation enthalpy of catechol and of flavonoid antioxidants.
    Lucarini M; Pedulli GF; Guerra M
    Chemistry; 2004 Feb; 10(4):933-9. PubMed ID: 14978819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant activity of rooperol investigated through Cu (I and II) chelation ability and the hydrogen transfer mechanism: a DFT study.
    Kabanda MM
    Chem Res Toxicol; 2012 Oct; 25(10):2153-66. PubMed ID: 22946567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping of the OH radical by alpha-tocopherol: a theoretical study.
    Navarrete M; Rangel C; Corchado JC; Espinosa-García J
    J Phys Chem A; 2005 Jun; 109(21):4777-84. PubMed ID: 16833821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the hydrogen abstraction reactions of C2H radical with CH3CN, C2H5CN, and C3H7CN by dual-level generalized transition state theory.
    Zhao ZX; Liu JY; Wang L; Zhang HX; Hou CY; Sun CC
    J Phys Chem A; 2008 Sep; 112(36):8455-63. PubMed ID: 18710195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variational transition state theory calculations for the rate constants of the hydrogen scrambling and the dissociation of BH5 using the multiconfiguration molecular mechanics algorithm.
    Kim KH; Kim Y
    J Chem Phys; 2004 Jan; 120(2):623-30. PubMed ID: 15267896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of the trapping of the OOH radical by coenzyme Q.
    Espinosa-García J
    J Am Chem Soc; 2004 Jan; 126(3):920-7. PubMed ID: 14733569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canonical variational transition-state theory study of the CF3CH2CH3 + OH reaction.
    Gonzalez-Lafont A; Lluch JM; Varela-Alvarez A; Sordo JA
    J Phys Chem B; 2008 Jan; 112(2):328-35. PubMed ID: 18081337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the hydrogen abstraction *CH3 + alkane --> CH4 + alkyl reaction class: an application of the reaction class transition state theory.
    Kungwan N; Truong TN
    J Phys Chem A; 2005 Sep; 109(34):7742-50. PubMed ID: 16834150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical chain reduction of alkylboron compounds with catechols.
    Villa G; Povie G; Renaud P
    J Am Chem Soc; 2011 Apr; 133(15):5913-20. PubMed ID: 21341798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to evaluate capacity and efficiency of water soluble antioxidants as peroxyl radical scavengers.
    Zennaro L; Rossetto M; Vanzani P; De Marco V; Scarpa M; Battistin L; Rigo A
    Arch Biochem Biophys; 2007 Jun; 462(1):38-46. PubMed ID: 17466929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant activity of an aminothiazole compound: possible mechanisms.
    De S; Adhikari S; Tilak-Jain J; Menon VP; Devasagayam TP
    Chem Biol Interact; 2008 Jun; 173(3):215-23. PubMed ID: 18466888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum chemistry study of the Cl atom reaction with formaldehyde.
    Gruber-Stadler M; Mühlhäuser M; Sellevåg SR; Nielsen CJ
    J Phys Chem A; 2008 Jan; 112(1):9-22. PubMed ID: 18069803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Laboratory studies of the antioxidant effect and free radical elimination of CoD tea].
    Kosáry J; Aubrecht E; Kopácsi S; Myszlográd R
    Acta Pharm Hung; 2003; 73(2):92-6. PubMed ID: 14702689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigation of the hydrogen abstraction reaction of the OH radical with CH2FCH2F (HFC-152): a dual-level direct dynamics study.
    Taghikhani M; Parsafar GA
    J Phys Chem A; 2007 Aug; 111(33):8095-103. PubMed ID: 17661451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.