These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17428198)

  • 1. Polyamine analogues: potent inducers of nucleosomal array oligomerization and inhibitors of yeast cell growth.
    Carruthers LM; Marton LJ; Peterson CL
    Biochem J; 2007 Aug; 405(3):541-5. PubMed ID: 17428198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antizyme induction by polyamine analogues as a factor of cell growth inhibition.
    Mitchell JL; Leyser A; Holtorff MS; Bates JS; Frydman B; Valasinas AL; Reddy VK; Marton LJ
    Biochem J; 2002 Sep; 366(Pt 2):663-71. PubMed ID: 11972449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of spermine and spermidine effects on Saccharomyces cerevisiae. Polyamine production in different growth conditions and in the presence of interleukin-2.
    Del Carratore R; Bronzetti G; Valenti D
    J Environ Pathol Toxicol Oncol; 1993; 12(3):143-7. PubMed ID: 8189367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamines may regulate S-phase progression but not the dynamic changes of chromatin during the cell cycle.
    Laitinen J; Stenius K; Eloranta TO; Hölttä E
    J Cell Biochem; 1998 Feb; 68(2):200-12. PubMed ID: 9443076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction between GCN5 and polyamines: a new role for core histone acetylation.
    Pollard KJ; Samuels ML; Crowley KA; Hansen JC; Peterson CL
    EMBO J; 1999 Oct; 18(20):5622-33. PubMed ID: 10523306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues.
    Casero RA; Frydman B; Stewart TM; Woster PM
    Proc West Pharmacol Soc; 2005; 48():24-30. PubMed ID: 16416654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of polyamine analogues determines haemoglobin production and cytotoxicity in murine erythroleukaemia cells.
    Clément S; Delcros JG; Basu HS; Quash G; Marton LJ; Feuerstein BG
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):787-91. PubMed ID: 7639694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamine-sensitive magnesium transport in Saccharomyces cerevisiae.
    Maruyama T; Masuda N; Kakinuma Y; Igarashi K
    Biochim Biophys Acta; 1994 Sep; 1194(2):289-95. PubMed ID: 7918542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the polyamine analogues BE-4-4-4-4, BE-3-7-3, and BE-3-3-3 on the proliferation of three prostate cancer cell lines.
    Jeffers L; Church D; Basu H; Marton L; Wilding G
    Cancer Chemother Pharmacol; 1997; 40(2):172-9. PubMed ID: 9182840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamine-based analogs and conjugates as antikinetoplastid agents.
    Jagu E; Pomel S; Pethe S; Loiseau PM; Labruère R
    Eur J Med Chem; 2017 Oct; 139():982-1015. PubMed ID: 28886510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of polyamine analogs as cancer therapeutic agents.
    Thomas T; Balabhadrapathruni S; Gallo MA; Thomas TJ
    Oncol Res; 2002; 13(3):123-35. PubMed ID: 12555742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines, chromatin structure and transcription.
    Matthews HR
    Bioessays; 1993 Aug; 15(8):561-6. PubMed ID: 8135771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1-(N-alkylamino)-11-(N-ethylamino)-4,8-diazaundecanes: simple synthetic polyamine analogues that differentially alter tubulin polymerization.
    Webb HK; Wu Z; Sirisoma N; Ha HC; Casero RA; Woster PM
    J Med Chem; 1999 Apr; 42(8):1415-21. PubMed ID: 10212127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).
    Agostinelli E; Vianello F; Magliulo G; Thomas T; Thomas TJ
    Int J Oncol; 2015 Jan; 46(1):5-16. PubMed ID: 25333509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major increases in spermidine/spermine-N1-acetyltransferase activity by spermine analogues and their relationship to polyamine depletion and growth inhibition in L1210 cells.
    Libby PR; Henderson M; Bergeron RJ; Porter CW
    Cancer Res; 1989 Nov; 49(22):6226-31. PubMed ID: 2804970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of essential yeast genes involved in polyamine resistance.
    Aouida M; Ramotar D
    Gene; 2018 Nov; 677():361-369. PubMed ID: 30153484
    [No Abstract]   [Full Text] [Related]  

  • 17. Polyamine analogues targeting epigenetic gene regulation.
    Huang Y; Marton LJ; Woster PM; Casero RA
    Essays Biochem; 2009 Nov; 46():95-110. PubMed ID: 20095972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconversion of polyamines in wild-type strains and mutants of yeasts and the effects of polyamines on their growth.
    Hamana K; Matsuzaki S; Hosaka K; Yamashita S
    FEMS Microbiol Lett; 1989 Oct; 52(1-2):231-6. PubMed ID: 2689281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine stress at high pH in Escherichia coli K-12.
    Yohannes E; Thurber AE; Wilks JC; Tate DP; Slonczewski JL
    BMC Microbiol; 2005 Oct; 5():59. PubMed ID: 16223443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective regulation of polyamine metabolism with methylated polyamine analogues.
    Keinänen TA; Hyvönen MT; Alhonen L; Vepsäläinen J; Khomutov AR
    Amino Acids; 2014 Mar; 46(3):605-20. PubMed ID: 24022706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.