BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17428198)

  • 1. Polyamine analogues: potent inducers of nucleosomal array oligomerization and inhibitors of yeast cell growth.
    Carruthers LM; Marton LJ; Peterson CL
    Biochem J; 2007 Aug; 405(3):541-5. PubMed ID: 17428198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antizyme induction by polyamine analogues as a factor of cell growth inhibition.
    Mitchell JL; Leyser A; Holtorff MS; Bates JS; Frydman B; Valasinas AL; Reddy VK; Marton LJ
    Biochem J; 2002 Sep; 366(Pt 2):663-71. PubMed ID: 11972449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of spermine and spermidine effects on Saccharomyces cerevisiae. Polyamine production in different growth conditions and in the presence of interleukin-2.
    Del Carratore R; Bronzetti G; Valenti D
    J Environ Pathol Toxicol Oncol; 1993; 12(3):143-7. PubMed ID: 8189367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamines may regulate S-phase progression but not the dynamic changes of chromatin during the cell cycle.
    Laitinen J; Stenius K; Eloranta TO; Hölttä E
    J Cell Biochem; 1998 Feb; 68(2):200-12. PubMed ID: 9443076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction between GCN5 and polyamines: a new role for core histone acetylation.
    Pollard KJ; Samuels ML; Crowley KA; Hansen JC; Peterson CL
    EMBO J; 1999 Oct; 18(20):5622-33. PubMed ID: 10523306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues.
    Casero RA; Frydman B; Stewart TM; Woster PM
    Proc West Pharmacol Soc; 2005; 48():24-30. PubMed ID: 16416654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of polyamine analogues determines haemoglobin production and cytotoxicity in murine erythroleukaemia cells.
    Clément S; Delcros JG; Basu HS; Quash G; Marton LJ; Feuerstein BG
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):787-91. PubMed ID: 7639694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamine-sensitive magnesium transport in Saccharomyces cerevisiae.
    Maruyama T; Masuda N; Kakinuma Y; Igarashi K
    Biochim Biophys Acta; 1994 Sep; 1194(2):289-95. PubMed ID: 7918542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the polyamine analogues BE-4-4-4-4, BE-3-7-3, and BE-3-3-3 on the proliferation of three prostate cancer cell lines.
    Jeffers L; Church D; Basu H; Marton L; Wilding G
    Cancer Chemother Pharmacol; 1997; 40(2):172-9. PubMed ID: 9182840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamine-based analogs and conjugates as antikinetoplastid agents.
    Jagu E; Pomel S; Pethe S; Loiseau PM; Labruère R
    Eur J Med Chem; 2017 Oct; 139():982-1015. PubMed ID: 28886510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of polyamine analogs as cancer therapeutic agents.
    Thomas T; Balabhadrapathruni S; Gallo MA; Thomas TJ
    Oncol Res; 2002; 13(3):123-35. PubMed ID: 12555742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines, chromatin structure and transcription.
    Matthews HR
    Bioessays; 1993 Aug; 15(8):561-6. PubMed ID: 8135771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1-(N-alkylamino)-11-(N-ethylamino)-4,8-diazaundecanes: simple synthetic polyamine analogues that differentially alter tubulin polymerization.
    Webb HK; Wu Z; Sirisoma N; Ha HC; Casero RA; Woster PM
    J Med Chem; 1999 Apr; 42(8):1415-21. PubMed ID: 10212127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).
    Agostinelli E; Vianello F; Magliulo G; Thomas T; Thomas TJ
    Int J Oncol; 2015 Jan; 46(1):5-16. PubMed ID: 25333509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major increases in spermidine/spermine-N1-acetyltransferase activity by spermine analogues and their relationship to polyamine depletion and growth inhibition in L1210 cells.
    Libby PR; Henderson M; Bergeron RJ; Porter CW
    Cancer Res; 1989 Nov; 49(22):6226-31. PubMed ID: 2804970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of essential yeast genes involved in polyamine resistance.
    Aouida M; Ramotar D
    Gene; 2018 Nov; 677():361-369. PubMed ID: 30153484
    [No Abstract]   [Full Text] [Related]  

  • 17. Polyamine analogues targeting epigenetic gene regulation.
    Huang Y; Marton LJ; Woster PM; Casero RA
    Essays Biochem; 2009 Nov; 46():95-110. PubMed ID: 20095972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconversion of polyamines in wild-type strains and mutants of yeasts and the effects of polyamines on their growth.
    Hamana K; Matsuzaki S; Hosaka K; Yamashita S
    FEMS Microbiol Lett; 1989 Oct; 52(1-2):231-6. PubMed ID: 2689281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine stress at high pH in Escherichia coli K-12.
    Yohannes E; Thurber AE; Wilks JC; Tate DP; Slonczewski JL
    BMC Microbiol; 2005 Oct; 5():59. PubMed ID: 16223443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective regulation of polyamine metabolism with methylated polyamine analogues.
    Keinänen TA; Hyvönen MT; Alhonen L; Vepsäläinen J; Khomutov AR
    Amino Acids; 2014 Mar; 46(3):605-20. PubMed ID: 24022706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.