These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Study of spermine and spermidine effects on Saccharomyces cerevisiae. Polyamine production in different growth conditions and in the presence of interleukin-2. Del Carratore R; Bronzetti G; Valenti D J Environ Pathol Toxicol Oncol; 1993; 12(3):143-7. PubMed ID: 8189367 [TBL] [Abstract][Full Text] [Related]
4. Polyamines may regulate S-phase progression but not the dynamic changes of chromatin during the cell cycle. Laitinen J; Stenius K; Eloranta TO; Hölttä E J Cell Biochem; 1998 Feb; 68(2):200-12. PubMed ID: 9443076 [TBL] [Abstract][Full Text] [Related]
5. Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. Pollard KJ; Samuels ML; Crowley KA; Hansen JC; Peterson CL EMBO J; 1999 Oct; 18(20):5622-33. PubMed ID: 10523306 [TBL] [Abstract][Full Text] [Related]
6. Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues. Casero RA; Frydman B; Stewart TM; Woster PM Proc West Pharmacol Soc; 2005; 48():24-30. PubMed ID: 16416654 [TBL] [Abstract][Full Text] [Related]
7. The structure of polyamine analogues determines haemoglobin production and cytotoxicity in murine erythroleukaemia cells. Clément S; Delcros JG; Basu HS; Quash G; Marton LJ; Feuerstein BG Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):787-91. PubMed ID: 7639694 [TBL] [Abstract][Full Text] [Related]
8. Polyamine-sensitive magnesium transport in Saccharomyces cerevisiae. Maruyama T; Masuda N; Kakinuma Y; Igarashi K Biochim Biophys Acta; 1994 Sep; 1194(2):289-95. PubMed ID: 7918542 [TBL] [Abstract][Full Text] [Related]
9. Effects of the polyamine analogues BE-4-4-4-4, BE-3-7-3, and BE-3-3-3 on the proliferation of three prostate cancer cell lines. Jeffers L; Church D; Basu H; Marton L; Wilding G Cancer Chemother Pharmacol; 1997; 40(2):172-9. PubMed ID: 9182840 [TBL] [Abstract][Full Text] [Related]
10. Polyamine-based analogs and conjugates as antikinetoplastid agents. Jagu E; Pomel S; Pethe S; Loiseau PM; Labruère R Eur J Med Chem; 2017 Oct; 139():982-1015. PubMed ID: 28886510 [TBL] [Abstract][Full Text] [Related]
11. Development of polyamine analogs as cancer therapeutic agents. Thomas T; Balabhadrapathruni S; Gallo MA; Thomas TJ Oncol Res; 2002; 13(3):123-35. PubMed ID: 12555742 [TBL] [Abstract][Full Text] [Related]
13. 1-(N-alkylamino)-11-(N-ethylamino)-4,8-diazaundecanes: simple synthetic polyamine analogues that differentially alter tubulin polymerization. Webb HK; Wu Z; Sirisoma N; Ha HC; Casero RA; Woster PM J Med Chem; 1999 Apr; 42(8):1415-21. PubMed ID: 10212127 [TBL] [Abstract][Full Text] [Related]
14. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). Agostinelli E; Vianello F; Magliulo G; Thomas T; Thomas TJ Int J Oncol; 2015 Jan; 46(1):5-16. PubMed ID: 25333509 [TBL] [Abstract][Full Text] [Related]
15. Major increases in spermidine/spermine-N1-acetyltransferase activity by spermine analogues and their relationship to polyamine depletion and growth inhibition in L1210 cells. Libby PR; Henderson M; Bergeron RJ; Porter CW Cancer Res; 1989 Nov; 49(22):6226-31. PubMed ID: 2804970 [TBL] [Abstract][Full Text] [Related]
16. Identification of essential yeast genes involved in polyamine resistance. Aouida M; Ramotar D Gene; 2018 Nov; 677():361-369. PubMed ID: 30153484 [No Abstract] [Full Text] [Related]
18. Interconversion of polyamines in wild-type strains and mutants of yeasts and the effects of polyamines on their growth. Hamana K; Matsuzaki S; Hosaka K; Yamashita S FEMS Microbiol Lett; 1989 Oct; 52(1-2):231-6. PubMed ID: 2689281 [TBL] [Abstract][Full Text] [Related]