BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17428496)

  • 1. Solution structure of the MID1 B-box2 CHC(D/C)C(2)H(2) zinc-binding domain: insights into an evolutionarily conserved RING fold.
    Massiah MA; Matts JA; Short KM; Simmons BN; Singireddy S; Yi Z; Cox TC
    J Mol Biol; 2007 May; 369(1):1-10. PubMed ID: 17428496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING.
    Massiah MA; Simmons BN; Short KM; Cox TC
    J Mol Biol; 2006 Apr; 358(2):532-45. PubMed ID: 16529770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the MID1 tandem B-boxes reveals an interaction reminiscent of intermolecular ring heterodimers.
    Tao H; Simmons BN; Singireddy S; Jakkidi M; Short KM; Cox TC; Massiah MA
    Biochemistry; 2008 Feb; 47(8):2450-7. PubMed ID: 18220417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of the microtubule-targeting COS domain of MID1.
    Wright KM; Du H; Dagnachew M; Massiah MA
    FEBS J; 2016 Aug; 283(16):3089-102. PubMed ID: 27367845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. B-box1 Domain of MID1 Interacts with the Ube2D1 E2 Enzyme Differently Than RING E3 Ligases.
    Kaur A; Gladu EM; Wright KM; Webb JA; Massiah MA
    Biochemistry; 2023 Mar; 62(5):1012-1025. PubMed ID: 36820504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-function study of MID1 mutations associated with a mild Opitz phenotype.
    Mnayer L; Khuri S; Merheby HA; Meroni G; Elsas LJ
    Mol Genet Metab; 2006 Mar; 87(3):198-203. PubMed ID: 16378742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions.
    Peng H; Begg GE; Schultz DC; Friedman JR; Jensen DE; Speicher DW; Rauscher FJ
    J Mol Biol; 2000 Feb; 295(5):1139-62. PubMed ID: 10653693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional observations of the P151L MID1 mutation reveal alpha4 plays a significant role in X-linked Opitz Syndrome.
    Wright KM; Du H; Massiah MA
    FEBS J; 2017 Jul; 284(14):2183-2193. PubMed ID: 28548391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain.
    Zhao Y; Zeng C; Massiah MA
    PLoS One; 2015; 10(4):e0124377. PubMed ID: 25874572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and characterization of the in vitro e3 ligase activity of the human MID1 protein.
    Han X; Du H; Massiah MA
    J Mol Biol; 2011 Apr; 407(4):505-20. PubMed ID: 21296087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development.
    Borden KL; Lally JM; Martin SR; O'Reilly NJ; Etkin LD; Freemont PS
    EMBO J; 1995 Dec; 14(23):5947-56. PubMed ID: 8846787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MID1 catalyzes the ubiquitination of protein phosphatase 2A and mutations within its Bbox1 domain disrupt polyubiquitination of alpha4 but not of PP2Ac.
    Du H; Wu K; Didoronkute A; Levy MV; Todi N; Shchelokova A; Massiah MA
    PLoS One; 2014; 9(9):e107428. PubMed ID: 25207814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution NMR structure of the TRIM21 B-box2 and identification of residues involved in its interaction with the RING domain.
    Wallenhammar A; Anandapadamanaban M; Lemak A; Mirabello C; Lundström P; Wallner B; Sunnerhagen M
    PLoS One; 2017; 12(7):e0181551. PubMed ID: 28753623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FXY2/MID2, a gene related to the X-linked Opitz syndrome gene FXY/MID1, maps to Xq22 and encodes a FNIII domain-containing protein that associates with microtubules.
    Perry J; Short KM; Romer JT; Swift S; Cox TC; Ashworth A
    Genomics; 1999 Dec; 62(3):385-94. PubMed ID: 10644436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders.
    Short KM; Hopwood B; Yi Z; Cox TC
    BMC Cell Biol; 2002; 3():1. PubMed ID: 11806752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A.
    Aranda-Orgillés B; Aigner J; Kunath M; Lurz R; Schneider R; Schweiger S
    PLoS One; 2008; 3(10):e3507. PubMed ID: 18949047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XLOS-observed mutations of MID1 Bbox1 domain cause domain unfolding.
    Wright KM; Wu K; Babatunde O; Du H; Massiah MA
    PLoS One; 2014; 9(9):e107537. PubMed ID: 25216264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opitz G/BBB syndrome in Xp22: mutations in the MID1 gene cluster in the carboxy-terminal domain.
    Gaudenz K; Roessler E; Quaderi N; Franco B; Feldman G; Gasser DL; Wittwer B; Horst J; Montini E; Opitz JM; Ballabio A; Muenke M
    Am J Hum Genet; 1998 Sep; 63(3):703-10. PubMed ID: 9718340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZZ domain of CBP: an unusual zinc finger fold in a protein interaction module.
    Legge GB; Martinez-Yamout MA; Hambly DM; Trinh T; Lee BM; Dyson HJ; Wright PE
    J Mol Biol; 2004 Oct; 343(4):1081-93. PubMed ID: 15476823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of the zinc finger HIT domain in protein FON.
    He F; Umehara T; Tsuda K; Inoue M; Kigawa T; Matsuda T; Yabuki T; Aoki M; Seki E; Terada T; Shirouzu M; Tanaka A; Sugano S; Muto Y; Yokoyama S
    Protein Sci; 2007 Aug; 16(8):1577-87. PubMed ID: 17656577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.