BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17428498)

  • 1. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5' tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases.
    Retailleau P; Weinreb V; Hu M; Carter CW
    J Mol Biol; 2007 May; 369(1):108-28. PubMed ID: 17428498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase.
    Doublié S; Bricogne G; Gilmore C; Carter CW
    Structure; 1995 Jan; 3(1):17-31. PubMed ID: 7743129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of crystal growth. Tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis.
    Carter CW; Doublié S; Coleman DE
    J Mol Biol; 1994 May; 238(3):346-65. PubMed ID: 8176729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the role of the KMSKS loop in the catalytic mechanism of the tyrosyl-tRNA synthetase using multimutant cycles.
    First EA; Fersht AR
    Biochemistry; 1995 Apr; 34(15):5030-43. PubMed ID: 7711024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of lysine-195 in the KMSKS sequence of E. coli tryptophanyl-tRNA synthetase.
    Chan KW; Koeppe RE
    FEBS Lett; 1995 Apr; 363(1-2):33-6. PubMed ID: 7729548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering.
    Leatherbarrow RJ; Fersht AR; Winter G
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7840-4. PubMed ID: 3865201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystals of Bacillus stearothermophilus tryptophanyl-tRNA synthetase containing enzymatically formed acyl transfer product tryptophanyl-ATP, an active site maker for the 3' CCA terminus of tryptophanyl-tRNATrp.
    Coleman DE; Carter CW
    Biochemistry; 1984 Jan; 23(2):381-5. PubMed ID: 6559601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.
    Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S
    Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis reveals transition-state stabilization as a general catalytic mechanism for aminoacyl-tRNA synthetases.
    Borgford TJ; Gray TE; Brand NJ; Fersht AR
    Biochemistry; 1987 Nov; 26(23):7246-50. PubMed ID: 3427072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of threonine 234 in catalysis of tyrosyl adenylate formation by tyrosyl-tRNA synthetase.
    First EA; Fersht AR
    Biochemistry; 1993 Dec; 32(49):13644-50. PubMed ID: 8257697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization of substrate and product analog complexes of tryptophanyl-tRNA synthetase.
    Carter CW; Coleman DE
    Fed Proc; 1984 Dec; 43(15):2981-3. PubMed ID: 6500072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of P1,P4-di(adenosine 5'-) tetraphosphate by leucyl-tRNA synthetase, coupled with ATP regeneration.
    Kitabatake S; Dombou M; Tomioka I; Nakajima H
    Biochem Biophys Res Commun; 1987 Jul; 146(1):173-8. PubMed ID: 3606615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Order of binding of substrate to valyl-tRNA synthetase from Bacillus stearothermophilus in amino acid activation reaction.
    Kakitani M; Tonomura B; Hiromi K
    Biochem Int; 1987 Apr; 14(4):597-603. PubMed ID: 3453086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Tryptophanyl tRNA synthetase: isolation and characteristics of the tryptophanyl-enzyme].
    Favorova OO; Kovaleva GK; Moroz SG; Kiselev LL
    Mol Biol (Mosk); 1978; 12(3):588-601. PubMed ID: 207977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains.
    Yang XL; Otero FJ; Skene RJ; McRee DE; Schimmel P; Ribas de Pouplana L
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15376-80. PubMed ID: 14671330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and thermodynamic properties of wild-type and engineered mutants of tyrosyl-tRNA synthetase analyzed by pyrophosphate-exchange kinetics.
    Wells TN; Knill-Jones JW; Gray TE; Fersht AR
    Biochemistry; 1991 May; 30(21):5151-6. PubMed ID: 1645192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase.
    Perona JJ; Rould MA; Steitz TA
    Biochemistry; 1993 Aug; 32(34):8758-71. PubMed ID: 8364025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of crystalline tyrosyl-tRNA synthetase with adenosine, adenosine monophosphate, adenosine triphosphate and pyrophosphate in the presence of tyrosinol.
    Monteilhet C; Blow DM; Brick P
    J Mol Biol; 1984 Mar; 173(4):477-85. PubMed ID: 6323720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of tryptophanyl-tRNA synthetase with the triazine dye Brown MX-5BR.
    McArdell JE; Atkinson T; Bruton CJ
    Eur J Biochem; 1982 Jul; 125(2):361-6. PubMed ID: 7117237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminoacyl-tRNA synthetases: affinity labeling of the ATP binding site by 2', 3' -ribose oxidized ATP.
    Fayat G; Fromant M; Blanquet S
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2088-92. PubMed ID: 353807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.