BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17428610)

  • 1. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish.
    Bretaud S; Li Q; Lockwood BL; Kobayashi K; Lin E; Guo S
    Neuroscience; 2007 May; 146(3):1109-16. PubMed ID: 17428610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of food and opiate preference by a genetic mutation in zebrafish.
    Lau B; Bretaud S; Huang Y; Lin E; Guo S
    Genes Brain Behav; 2006 Oct; 5(7):497-505. PubMed ID: 17010096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphine sex-dependently induced place conditioning in adult Wistar rats.
    Karami M; Zarrindast MR
    Eur J Pharmacol; 2008 Mar; 582(1-3):78-87. PubMed ID: 18191832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-low dose naloxone restores the antinociceptive effect of morphine in pertussis toxin-treated rats by reversing the coupling of mu-opioid receptors from Gs-protein to coupling to Gi-protein.
    Tsai RY; Tai YH; Tzeng JI; Cherng CH; Yeh CC; Wong CS
    Neuroscience; 2009 Dec; 164(2):435-43. PubMed ID: 19682558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores.
    Lenard NR; Daniels DJ; Portoghese PS; Roerig SC
    Eur J Pharmacol; 2007 Jul; 566(1-3):75-82. PubMed ID: 17383633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into opioid regulatory pathways: influence of opioids on Wnt1 expression in zebrafish embryos.
    Sanchez-Simon FM; Ledo AS; Arevalo R; Rodriguez RE
    Neuroscience; 2012 Jan; 200():237-47. PubMed ID: 22062135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute effects of morphine on distinct forms of impulsive behavior in rats.
    Pattij T; Schetters D; Janssen MC; Wiskerke J; Schoffelmeer AN
    Psychopharmacology (Berl); 2009 Aug; 205(3):489-502. PubMed ID: 19436995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice.
    Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F
    J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling.
    Wang HY; Friedman E; Olmstead MC; Burns LH
    Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid withdrawal for 4 days prevents synaptic depression induced by low dose of morphine or naloxone in rat hippocampal CA1 area in vivo.
    Dong Z; Han H; Cao J; Xu L
    Hippocampus; 2010 Feb; 20(2):335-43. PubMed ID: 19437411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of cholestasis on rewarding and exploratory behaviors induced by opioidergic and dopaminergic agents in mice.
    Ebrahimi-ghiri M; Nasehi M; Rostami P; Mohseni-Kouchesfehani H; Zarrindast MR
    Arch Iran Med; 2012 Oct; 15(10):617-24. PubMed ID: 23020537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine D3 receptor knock-out mice display deficits in locomotor sensitization after chronic morphine administration.
    Li T; Hou Y; Yan CX; Chen T; Zhao Y; Li SB
    Neurosci Lett; 2010 Nov; 485(3):256-60. PubMed ID: 20849922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of opioid agonist and antagonist in dams exposed to morphine during the perinatal period.
    Sobor M; Timár J; Riba P; Friedmann T; Király KP; Gyarmati S; Al-Khrasani M; Fürst S
    Brain Res Bull; 2011 Jan; 84(1):53-60. PubMed ID: 20934489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement mu opioid antinociception by oral delta9-tetrahydrocannabinol: dose-response analysis and receptor identification.
    Cichewicz DL; Martin ZL; Smith FL; Welch SP
    J Pharmacol Exp Ther; 1999 May; 289(2):859-67. PubMed ID: 10215664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. μ Opioid Receptor Expression after Morphine Administration Is Regulated by miR-212/132 Cluster.
    Garcia-Concejo A; Jimenez-Gonzalez A; Rodríguez RE
    PLoS One; 2016; 11(7):e0157806. PubMed ID: 27380026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphine self-administration into the lateral septum depends on dopaminergic mechanisms: Evidence from pharmacology and Fos neuroimaging.
    Le Merrer J; Gavello-Baudy S; Galey D; Cazala P
    Behav Brain Res; 2007 Jun; 180(2):203-17. PubMed ID: 17467070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo effects of morphine on neuronal fate and opioid receptor expression in zebrafish embryos.
    Sanchez-Simon FM; Arenzana FJ; Rodriguez RE
    Eur J Neurosci; 2010 Aug; 32(4):550-9. PubMed ID: 20646065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in morphine-induced reward, locomotor activity, and thermoregulation in CREB-deficient mice.
    Walters CL; Godfrey M; Li X; Blendy JA
    Brain Res; 2005 Jan; 1032(1-2):193-9. PubMed ID: 15680959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased mu-opioid receptor signalling and a reduction in calcium current density in sensory neurons from chronically morphine-treated mice.
    Johnson EE; Chieng B; Napier I; Connor M
    Br J Pharmacol; 2006 Aug; 148(7):947-55. PubMed ID: 16783402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABA and opioid mechanisms of the central amygdala underlie the withdrawal-potentiated startle from acute morphine.
    Cabral A; Ruggiero RN; Nobre MJ; Brandão ML; Castilho VM
    Prog Neuropsychopharmacol Biol Psychiatry; 2009 Mar; 33(2):334-44. PubMed ID: 19150477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.