BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17428831)

  • 21. Ectopic Pax6 expression disturbs lens fiber cell differentiation.
    Duncan MK; Xie L; David LL; Robinson ML; Taube JR; Cui W; Reneker LW
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3589-98. PubMed ID: 15452066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic dissection of Pax6 dosage requirements in the developing mouse eye.
    Davis-Silberman N; Kalich T; Oron-Karni V; Marquardt T; Kroeber M; Tamm ER; Ashery-Padan R
    Hum Mol Genet; 2005 Aug; 14(15):2265-76. PubMed ID: 15987699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segregation of lens and olfactory precursors from a common territory: cell sorting and reciprocity of Dlx5 and Pax6 expression.
    Bhattacharyya S; Bailey AP; Bronner-Fraser M; Streit A
    Dev Biol; 2004 Jul; 271(2):403-14. PubMed ID: 15223343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype.
    Goudreau G; Petrou P; Reneker LW; Graw J; Löster J; Gruss P
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8719-24. PubMed ID: 12072567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Foxe3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage.
    Blixt A; Landgren H; Johansson BR; Carlsson P
    Dev Biol; 2007 Feb; 302(1):218-29. PubMed ID: 17064680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracorneal positioning of the lens in Pax6-GAL4/VP16 transgenic mice.
    Govindarajan V; Harrison WR; Xiao N; Liang D; Overbeek PA
    Mol Vis; 2005 Oct; 11():876-86. PubMed ID: 16270027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BMP-induced L-Maf regulates subsequent BMP-independent differentiation of primary lens fibre cells.
    Pandit T; Jidigam VK; Gunhaga L
    Dev Dyn; 2011 Aug; 240(8):1917-28. PubMed ID: 21761477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optic cup and facial patterning defects in ocular ectoderm beta-catenin gain-of-function mice.
    Miller LA; Smith AN; Taketo MM; Lang RA
    BMC Dev Biol; 2006 Mar; 6():14. PubMed ID: 16539717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathways regulating lens induction in the mouse.
    Lang RA
    Int J Dev Biol; 2004; 48(8-9):783-91. PubMed ID: 15558471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fgf receptor signaling plays a role in lens induction.
    Faber SC; Dimanlig P; Makarenkova HP; Shirke S; Ko K; Lang RA
    Development; 2001 Nov; 128(22):4425-38. PubMed ID: 11714669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6.
    Antosova B; Smolikova J; Klimova L; Lachova J; Bendova M; Kozmikova I; Machon O; Kozmik Z
    PLoS Genet; 2016 Dec; 12(12):e1006441. PubMed ID: 27918583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The involvement of neural retina pax6 in lens fiber differentiation.
    Reza HM; Yasuda K
    Dev Neurosci; 2004; 26(5-6):318-27. PubMed ID: 15855760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development.
    Kamachi Y; Uchikawa M; Tanouchi A; Sekido R; Kondoh H
    Genes Dev; 2001 May; 15(10):1272-86. PubMed ID: 11358870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Pygo2-H3K4me2/3 interaction is dispensable for mouse development and Wnt signaling-dependent transcription.
    Cantù C; Valenta T; Hausmann G; Vilain N; Aguet M; Basler K
    Development; 2013 Jun; 140(11):2377-86. PubMed ID: 23637336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abnormal migration and distribution of neural crest cells in Pax6 heterozygous mutant eye, a model for human eye diseases.
    Kanakubo S; Nomura T; Yamamura K; Miyazaki J; Tamai M; Osumi N
    Genes Cells; 2006 Aug; 11(8):919-33. PubMed ID: 16866875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell autonomous roles for AP-2alpha in lens vesicle separation and maintenance of the lens epithelial cell phenotype.
    Pontoriero GF; Deschamps P; Ashery-Padan R; Wong R; Yang Y; Zavadil J; Cvekl A; Sullivan S; Williams T; West-Mays JA
    Dev Dyn; 2008 Mar; 237(3):602-17. PubMed ID: 18224708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular analysis of endoderm regionalization.
    Yasugi S; Mizuno T
    Dev Growth Differ; 2008 Jun; 50 Suppl 1():S79-96. PubMed ID: 18430165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precise temporal control of the eye regulatory gene Pax6 via enhancer-binding site affinity.
    Rowan S; Siggers T; Lachke SA; Yue Y; Bulyk ML; Maas RL
    Genes Dev; 2010 May; 24(10):980-5. PubMed ID: 20413611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos.
    Lagutin O; Zhu CC; Furuta Y; Rowitch DH; McMahon AP; Oliver G
    Dev Dyn; 2001 Jul; 221(3):342-9. PubMed ID: 11458394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lens placode modulates extracellular matrix formation during early eye development.
    De Magalhães CG; Cvekl A; Jaeger RG; Yan CYI
    Differentiation; 2024; 138():100792. PubMed ID: 38935992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.