BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17428890)

  • 1. Simulated natural day lengths synchronize seasonal rhythms of asynchronously born male Siberian hamsters.
    Butler MP; Turner KW; Park JH; Butler JP; Trumbull JJ; Dunn SP; Villa P; Zucker I
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R402-12. PubMed ID: 17428890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing of puberty and synchronization of seasonal rhythms by simulated natural photoperiods in female Siberian hamsters.
    Butler MP; Trumbull JJ; Turner KW; Zucker I
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R413-20. PubMed ID: 17491109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal pelage changes are synchronized by simulated natural photoperiods in Siberian hamsters (Phodopus sungorus).
    Butler MP; Zucker I
    J Exp Zool A Ecol Genet Physiol; 2009 Aug; 311(7):475-82. PubMed ID: 19425044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of multiple short day lengths on body weights of gonadectomized siberian hamsters.
    Gorman MR
    Physiol Biochem Zool; 2003; 76(3):398-405. PubMed ID: 12905126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of photoperiod history on immune responses to intermediate day lengths in Siberian hamsters (Phodopus sungorus).
    Prendergast BJ; Bilbo SD; Dhabhar FS; Nelson RJ
    J Neuroimmunol; 2004 Apr; 149(1-2):31-9. PubMed ID: 15020062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A plastic interval timer synchronizes pubertal development of summer- and fall-born hamsters.
    Gorman MR
    Am J Physiol Regul Integr Comp Physiol; 2001 Nov; 281(5):R1613-23. PubMed ID: 11641134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melatonin implants disrupt developmental synchrony regulated by flexible interval timers.
    Gorman MR
    J Neuroendocrinol; 2003 Nov; 15(11):1084-94. PubMed ID: 14622439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal adaptations of Siberian hamsters. I. Accelerated gonadal and somatic development in increasing versus static long day lengths.
    Gorman MR
    Biol Reprod; 1995 Jul; 53(1):110-5. PubMed ID: 7669841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perinatal photoperiod organizes adult immune responses in Siberian hamsters (Phodopus sungorus).
    Weil ZM; Pyter LM; Martin LB; Nelson RJ
    Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1714-9. PubMed ID: 16410397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediate-duration day lengths unmask reproductive responses to nonphotic environmental cues.
    Paul MJ; Galang J; Schwartz WJ; Prendergast BJ
    Am J Physiol Regul Integr Comp Physiol; 2009 May; 296(5):R1613-9. PubMed ID: 19225143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal adaptations of Siberian hamsters. II. Pattern of change in daylength controls annual testicular and body weight rhythms.
    Gorman MR; Zucker I
    Biol Reprod; 1995 Jul; 53(1):116-25. PubMed ID: 7669842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoperiodism in hamsters: abrupt versus gradual changes in day length differentially entrain morning and evening circadian oscillators.
    Gorman MR; Freeman DA; Zucker I
    J Biol Rhythms; 1997 Apr; 12(2):122-35. PubMed ID: 9090566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of pineal-independent mediation of seasonal differences in suprachiasmatic nucleus AVP and VIP mRNA expression in Siberian hamsters.
    Freeman DA; Herron JM; Duncan MJ
    Brain Res Mol Brain Res; 2002 May; 101(1-2):33-8. PubMed ID: 12007829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of prenatal and postnatal photoperiods on postnatal testis development in the Siberian hamster (Phodopus sungorus).
    Shaw D; Goldman BD
    Biol Reprod; 1995 Apr; 52(4):833-8. PubMed ID: 7780005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoperiodic influences on ultradian rhythms of male Siberian hamsters.
    Prendergast BJ; Zucker I
    PLoS One; 2012; 7(7):e41723. PubMed ID: 22848579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal adaptation of dwarf hamsters (Genus Phodopus): differences between species and their geographic origin.
    Müller D; Hauer J; Schöttner K; Fritzsche P; Weinert D
    J Comp Physiol B; 2015 Dec; 185(8):917-30. PubMed ID: 26323343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental changes in male Siberian hamsters (Phodopus sungorus) exposed to different gestational and postnatal photoperiods.
    Shaw D; Goldman BD
    J Pineal Res; 2007 Aug; 43(1):25-34. PubMed ID: 17614832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food restriction during development delays puberty but does not affect adult seasonal reproductive responses to food availability in Siberian hamsters (Phodopus sungorus).
    Bailey AM; Hall CA; Legan SJ; Demas GE
    J Exp Zool A Ecol Integr Physiol; 2021 Oct; 335(8):691-702. PubMed ID: 34343418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous kisspeptin does not alter photoperiod-induced gonadal regression in Siberian hamsters (Phodopus sungorus).
    Greives TJ; Kriegsfeld LJ; Demas GE
    Gen Comp Endocrinol; 2008 May; 156(3):552-8. PubMed ID: 18405899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous T3 mimics long day lengths in Siberian hamsters.
    Freeman DA; Teubner BJ; Smith CD; Prendergast BJ
    Am J Physiol Regul Integr Comp Physiol; 2007 Jun; 292(6):R2368-72. PubMed ID: 17272662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.