BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17428985)

  • 1. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors.
    Roberts JA; Evans RJ
    J Neurosci; 2007 Apr; 27(15):4072-82. PubMed ID: 17428985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine substitution mutagenesis and the effects of methanethiosulfonate reagents at P2X2 and P2X4 receptors support a core common mode of ATP action at P2X receptors.
    Roberts JA; Digby HR; Kara M; El Ajouz S; Sutcliffe MJ; Evans RJ
    J Biol Chem; 2008 Jul; 283(29):20126-36. PubMed ID: 18487206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an intersubunit cross-link between substituted cysteine residues located in the putative ATP binding site of the P2X1 receptor.
    Marquez-Klaka B; Rettinger J; Bhargava Y; Eisele T; Nicke A
    J Neurosci; 2007 Feb; 27(6):1456-66. PubMed ID: 17287520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of the region Glu181 to Val200 of the extracellular loop of the human P2X1 receptor to agonist binding and gating revealed using cysteine scanning mutagenesis.
    Roberts JA; Valente M; Allsopp RC; Watt D; Evans RJ
    J Neurochem; 2009 May; 109(4):1042-52. PubMed ID: 19519776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved cysteine residues in the extracellular loop of the human P2X(1) receptor form disulfide bonds and are involved in receptor trafficking to the cell surface.
    Ennion SJ; Evans RJ
    Mol Pharmacol; 2002 Feb; 61(2):303-11. PubMed ID: 11809854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists.
    Roberts JA; Evans RJ
    J Biol Chem; 2004 Mar; 279(10):9043-55. PubMed ID: 14699168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: mapping agonist binding and channel gating.
    Allsopp RC; El Ajouz S; Schmid R; Evans RJ
    J Biol Chem; 2011 Aug; 286(33):29207-29217. PubMed ID: 21690089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the contribution of the first transmembrane domain to whole-cell current through an ATP-gated ionotropic P2X receptor.
    Haines WR; Voigt MM; Migita K; Torres GE; Egan TM
    J Neurosci; 2001 Aug; 21(16):5885-92. PubMed ID: 11487611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-subunit disulfide cross-linking in homomeric and heteromeric P2X receptors.
    Marquez-Klaka B; Rettinger J; Nicke A
    Eur Biophys J; 2009 Mar; 38(3):329-38. PubMed ID: 18427801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method.
    Egan TM; Haines WR; Voigt MM
    J Neurosci; 1998 Apr; 18(7):2350-9. PubMed ID: 9502796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of conserved polar glutamine, asparagine and threonine residues and glycosylation to agonist action at human P2X1 receptors for ATP.
    Roberts JA; Evans RJ
    J Neurochem; 2006 Feb; 96(3):843-52. PubMed ID: 16371009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the conserved cysteines of the rat P2X2 purinoceptor.
    Clyne JD; Wang LF; Hume RI
    J Neurosci; 2002 May; 22(10):3873-80. PubMed ID: 12019306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of amino acid residues contributing to the pore of a P2X receptor.
    Rassendren F; Buell G; Newbolt A; North RA; Surprenant A
    EMBO J; 1997 Jun; 16(12):3446-54. PubMed ID: 9218787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural identification of amino acid residues of the P2X2 receptor channel critical for the voltage- and [ATP]-dependent gating.
    Keceli B; Kubo Y
    J Physiol; 2009 Dec; 587(Pt 24):5801-18. PubMed ID: 19884318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of positively charged amino acids in ATP recognition by human P2X(1) receptors.
    Ennion S; Hagan S; Evans RJ
    J Biol Chem; 2000 Sep; 275(38):29361-7. PubMed ID: 10827197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved negatively charged residues are not required for ATP action at P2X(1) receptors.
    Ennion SJ; Ritson J; Evans RJ
    Biochem Biophys Res Commun; 2001 Dec; 289(3):700-4. PubMed ID: 11726204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between cysteines introduced into each transmembrane domain of the rat P2X2 receptor.
    Spelta V; Jiang LH; Bailey RJ; Surprenant A; North RA
    Br J Pharmacol; 2003 Jan; 138(1):131-6. PubMed ID: 12522082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis studies of conserved proline residues of human P2X receptors for ATP indicate that proline 272 contributes to channel function.
    Roberts JA; Evans RJ
    J Neurochem; 2005 Mar; 92(5):1256-64. PubMed ID: 15715674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.
    Farmer LK; Schmid R; Evans RJ
    J Biol Chem; 2015 Jan; 290(3):1559-69. PubMed ID: 25425641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gain and loss of channel function by alanine substitutions in the transmembrane segments of the rat ATP-gated P2X2 receptor.
    Li Z; Migita K; Samways DS; Voigt MM; Egan TM
    J Neurosci; 2004 Aug; 24(33):7378-86. PubMed ID: 15317863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.