These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 17428985)
1. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors. Roberts JA; Evans RJ J Neurosci; 2007 Apr; 27(15):4072-82. PubMed ID: 17428985 [TBL] [Abstract][Full Text] [Related]
2. Cysteine substitution mutagenesis and the effects of methanethiosulfonate reagents at P2X2 and P2X4 receptors support a core common mode of ATP action at P2X receptors. Roberts JA; Digby HR; Kara M; El Ajouz S; Sutcliffe MJ; Evans RJ J Biol Chem; 2008 Jul; 283(29):20126-36. PubMed ID: 18487206 [TBL] [Abstract][Full Text] [Related]
3. Identification of an intersubunit cross-link between substituted cysteine residues located in the putative ATP binding site of the P2X1 receptor. Marquez-Klaka B; Rettinger J; Bhargava Y; Eisele T; Nicke A J Neurosci; 2007 Feb; 27(6):1456-66. PubMed ID: 17287520 [TBL] [Abstract][Full Text] [Related]
4. Contribution of the region Glu181 to Val200 of the extracellular loop of the human P2X1 receptor to agonist binding and gating revealed using cysteine scanning mutagenesis. Roberts JA; Valente M; Allsopp RC; Watt D; Evans RJ J Neurochem; 2009 May; 109(4):1042-52. PubMed ID: 19519776 [TBL] [Abstract][Full Text] [Related]
5. Conserved cysteine residues in the extracellular loop of the human P2X(1) receptor form disulfide bonds and are involved in receptor trafficking to the cell surface. Ennion SJ; Evans RJ Mol Pharmacol; 2002 Feb; 61(2):303-11. PubMed ID: 11809854 [TBL] [Abstract][Full Text] [Related]
6. ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. Roberts JA; Evans RJ J Biol Chem; 2004 Mar; 279(10):9043-55. PubMed ID: 14699168 [TBL] [Abstract][Full Text] [Related]
7. Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: mapping agonist binding and channel gating. Allsopp RC; El Ajouz S; Schmid R; Evans RJ J Biol Chem; 2011 Aug; 286(33):29207-29217. PubMed ID: 21690089 [TBL] [Abstract][Full Text] [Related]
8. On the contribution of the first transmembrane domain to whole-cell current through an ATP-gated ionotropic P2X receptor. Haines WR; Voigt MM; Migita K; Torres GE; Egan TM J Neurosci; 2001 Aug; 21(16):5885-92. PubMed ID: 11487611 [TBL] [Abstract][Full Text] [Related]
9. Inter-subunit disulfide cross-linking in homomeric and heteromeric P2X receptors. Marquez-Klaka B; Rettinger J; Nicke A Eur Biophys J; 2009 Mar; 38(3):329-38. PubMed ID: 18427801 [TBL] [Abstract][Full Text] [Related]
10. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. Egan TM; Haines WR; Voigt MM J Neurosci; 1998 Apr; 18(7):2350-9. PubMed ID: 9502796 [TBL] [Abstract][Full Text] [Related]
11. Contribution of conserved polar glutamine, asparagine and threonine residues and glycosylation to agonist action at human P2X1 receptors for ATP. Roberts JA; Evans RJ J Neurochem; 2006 Feb; 96(3):843-52. PubMed ID: 16371009 [TBL] [Abstract][Full Text] [Related]
12. Mutational analysis of the conserved cysteines of the rat P2X2 purinoceptor. Clyne JD; Wang LF; Hume RI J Neurosci; 2002 May; 22(10):3873-80. PubMed ID: 12019306 [TBL] [Abstract][Full Text] [Related]
13. Identification of amino acid residues contributing to the pore of a P2X receptor. Rassendren F; Buell G; Newbolt A; North RA; Surprenant A EMBO J; 1997 Jun; 16(12):3446-54. PubMed ID: 9218787 [TBL] [Abstract][Full Text] [Related]
14. Functional and structural identification of amino acid residues of the P2X2 receptor channel critical for the voltage- and [ATP]-dependent gating. Keceli B; Kubo Y J Physiol; 2009 Dec; 587(Pt 24):5801-18. PubMed ID: 19884318 [TBL] [Abstract][Full Text] [Related]
15. The role of positively charged amino acids in ATP recognition by human P2X(1) receptors. Ennion S; Hagan S; Evans RJ J Biol Chem; 2000 Sep; 275(38):29361-7. PubMed ID: 10827197 [TBL] [Abstract][Full Text] [Related]
16. Conserved negatively charged residues are not required for ATP action at P2X(1) receptors. Ennion SJ; Ritson J; Evans RJ Biochem Biophys Res Commun; 2001 Dec; 289(3):700-4. PubMed ID: 11726204 [TBL] [Abstract][Full Text] [Related]
17. Interaction between cysteines introduced into each transmembrane domain of the rat P2X2 receptor. Spelta V; Jiang LH; Bailey RJ; Surprenant A; North RA Br J Pharmacol; 2003 Jan; 138(1):131-6. PubMed ID: 12522082 [TBL] [Abstract][Full Text] [Related]
18. Mutagenesis studies of conserved proline residues of human P2X receptors for ATP indicate that proline 272 contributes to channel function. Roberts JA; Evans RJ J Neurochem; 2005 Mar; 92(5):1256-64. PubMed ID: 15715674 [TBL] [Abstract][Full Text] [Related]
19. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP. Farmer LK; Schmid R; Evans RJ J Biol Chem; 2015 Jan; 290(3):1559-69. PubMed ID: 25425641 [TBL] [Abstract][Full Text] [Related]
20. Gain and loss of channel function by alanine substitutions in the transmembrane segments of the rat ATP-gated P2X2 receptor. Li Z; Migita K; Samways DS; Voigt MM; Egan TM J Neurosci; 2004 Aug; 24(33):7378-86. PubMed ID: 15317863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]