BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17428985)

  • 21. Contribution of calcium ions to P2X channel responses.
    Egan TM; Khakh BS
    J Neurosci; 2004 Mar; 24(13):3413-20. PubMed ID: 15056721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping the binding site of the P2X receptor antagonist PPADS reveals the importance of orthosteric site charge and the cysteine-rich head region.
    Huo H; Fryatt AG; Farmer LK; Schmid R; Evans RJ
    J Biol Chem; 2018 Aug; 293(33):12820-12831. PubMed ID: 29997254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor.
    Gu BJ; Sluyter R; Skarratt KK; Shemon AN; Dao-Ung LP; Fuller SJ; Barden JA; Clarke AL; Petrou S; Wiley JS
    J Biol Chem; 2004 Jul; 279(30):31287-95. PubMed ID: 15123679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor.
    Jiang LH; Rassendren F; Surprenant A; North RA
    J Biol Chem; 2000 Nov; 275(44):34190-6. PubMed ID: 10940304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular determinants of the agonist binding domain of a P2X receptor channel.
    Yan Z; Liang Z; Tomic M; Obsil T; Stojilkovic SS
    Mol Pharmacol; 2005 Apr; 67(4):1078-88. PubMed ID: 15632318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular properties of P2X receptors.
    Roberts JA; Vial C; Digby HR; Agboh KC; Wen H; Atterbury-Thomas A; Evans RJ
    Pflugers Arch; 2006 Aug; 452(5):486-500. PubMed ID: 16607539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage- and [ATP]-dependent gating of the P2X(2) ATP receptor channel.
    Fujiwara Y; Keceli B; Nakajo K; Kubo Y
    J Gen Physiol; 2009 Jan; 133(1):93-109. PubMed ID: 19114637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308.
    Cao L; Young MT; Broomhead HE; Fountain SJ; North RA
    J Neurosci; 2007 Nov; 27(47):12916-23. PubMed ID: 18032665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The conserved cysteine 7.38 residue is differentially accessible in the binding-site crevices of the mu, delta, and kappa opioid receptors.
    Xu W; Chen C; Huang P; Li J; de Riel JK; Javitch JA; Liu-Chen LY
    Biochemistry; 2000 Nov; 39(45):13904-15. PubMed ID: 11076532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cysteine-scanning mutagenesis and thiol modification of the Rickettsia prowazekii ATP/ADP translocase: evidence that TM VIII faces an aqueous channel.
    Winkler HH; Daugherty RM; Audia JP
    Biochemistry; 2003 Nov; 42(43):12562-9. PubMed ID: 14580202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of extracellular negatively charged residues to ATP action and zinc modulation of rat P2X2 receptors.
    Friday SC; Hume RI
    J Neurochem; 2008 May; 105(4):1264-75. PubMed ID: 18194442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct gating of ATP-activated ion channels (P2X2 receptors) by lipophilic attachment at the outer end of the second transmembrane domain.
    Rothwell SW; Stansfeld PJ; Bragg L; Verkhratsky A; North RA
    J Biol Chem; 2014 Jan; 289(2):618-26. PubMed ID: 24273165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cysteine-scanning mutagenesis and thiol modification of the Rickettsia prowazekii ATP/ADP translocase: evidence that transmembrane regions I and II, but not III, are structural components of the aqueous translocation channel.
    Alexeyev MF; Roberts RA; Daugherty RM; Audia JP; Winkler HH
    Biochemistry; 2004 Jun; 43(22):6995-7002. PubMed ID: 15170337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of a P2X receptor from Schistosoma mansoni.
    Agboh KC; Webb TE; Evans RJ; Ennion SJ
    J Biol Chem; 2004 Oct; 279(40):41650-7. PubMed ID: 15292267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of individual N-glycans for ATP potency and expression of the rat P2X1 receptor.
    Rettinger J; Aschrafi A; Schmalzing G
    J Biol Chem; 2000 Oct; 275(43):33542-7. PubMed ID: 10942758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X(2) receptor.
    Jiang LH; Rassendren F; Spelta V; Surprenant A; North RA
    J Biol Chem; 2001 May; 276(18):14902-8. PubMed ID: 11278888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the role of the first transmembrane domain in cation permeability and flux of the ATP-gated P2X2 receptor.
    Samways DS; Migita K; Li Z; Egan TM
    J Biol Chem; 2008 Feb; 283(8):5110-7. PubMed ID: 18048351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of the gate and selectivity filter of the full-length P2X7 receptor.
    Pippel A; Stolz M; Woltersdorf R; Kless A; Schmalzing G; Markwardt F
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2156-E2165. PubMed ID: 28235784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conserved lysin and arginin residues in the extracellular loop of P2X(3) receptors are involved in agonist binding.
    Fischer W; Zadori Z; Kullnick Y; Gröger-Arndt H; Franke H; Wirkner K; Illes P; Mager PP
    Eur J Pharmacol; 2007 Dec; 576(1-3):7-17. PubMed ID: 17764672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of aromatic and charged ectodomain residues in the P2X(4) receptor functions.
    Zemkova H; Yan Z; Liang Z; Jelinkova I; Tomic M; Stojilkovic SS
    J Neurochem; 2007 Aug; 102(4):1139-50. PubMed ID: 17663752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.