These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17428992)

  • 21. Attention-dependent allocation of auditory processing resources as measured by mismatch negativity.
    Dittmann-Balcar A; Thienel R; Schall U
    Neuroreport; 1999 Dec; 10(18):3749-53. PubMed ID: 10716203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for the auditory P3a reflecting an automatic process: elicitation during highly-focused continuous visual attention.
    Muller-Gass A; Macdonald M; Schröger E; Sculthorpe L; Campbell K
    Brain Res; 2007 Sep; 1170():71-8. PubMed ID: 17692834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased visual task difficulty enhances attentional capture by both visual and auditory distractor stimuli.
    Sugimoto F; Katayama J
    Brain Res; 2017 Jun; 1664():55-62. PubMed ID: 28377160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transiently evoked otoacoustic emission amplitudes change with changes of directed attention.
    Froehlich P; Collet L; Morgon A
    Physiol Behav; 1993 Apr; 53(4):679-82. PubMed ID: 8511172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cochlear microphonics and otoacoustic emissions in chronically de-efferented chinchilla.
    Zheng XY; McFadden SL; Henderson D; Ding DL; Burkard R
    Hear Res; 2000 May; 143(1-2):14-22. PubMed ID: 10771180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Existence of competing modality dominances.
    Robinson CW; Chandra M; Sinnett S
    Atten Percept Psychophys; 2016 May; 78(4):1104-14. PubMed ID: 26832916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Event-related potentials and audiovisual stimuli: multimodal interactions.
    Czigler I; Balázs L
    Neuroreport; 2001 Feb; 12(2):223-6. PubMed ID: 11209924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.
    Schupp HT; Stockburger J; Bublatzky F; Junghöfer M; Weike AI; Hamm AO
    Brain Res; 2008 Sep; 1230():168-76. PubMed ID: 18662679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intermodal selective attention. I. Effects on event-related potentials to lateralized auditory and visual stimuli.
    Woods DL; Alho K; Algazi A
    Electroencephalogr Clin Neurophysiol; 1992 May; 82(5):341-55. PubMed ID: 1374703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cochlear activity in silent cue-target intervals shows a theta-rhythmic pattern and is correlated to attentional alpha and theta modulations.
    Köhler MHA; Demarchi G; Weisz N
    BMC Biol; 2021 Mar; 19(1):48. PubMed ID: 33726746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.
    Aoyama A; Haruyama T; Kuriki S
    J Integr Neurosci; 2013 Sep; 12(3):385-99. PubMed ID: 24070061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of possible interactions of an attentional task with cochlear micromechanics.
    Avan P; Bonfils P
    Hear Res; 1992 Jan; 57(2):269-75. PubMed ID: 1733917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of cross-modal selective attention on the sensory periphery: cochlear sensitivity is altered by selective attention.
    Srinivasan S; Keil A; Stratis K; Woodruff Carr KL; Smith DW
    Neuroscience; 2012 Oct; 223():325-32. PubMed ID: 22871520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oscillatory infrasonic modulation of the cochlear amplifier by selective attention.
    Dragicevic CD; Marcenaro B; Navarrete M; Robles L; Delano PH
    PLoS One; 2019; 14(1):e0208939. PubMed ID: 30615632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-modal interactions in auditory and visual discrimination.
    Marks LE; Ben-Artzi E; Lakatos S
    Int J Psychophysiol; 2003 Oct; 50(1-2):125-45. PubMed ID: 14511841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cross-modal interactions in time and space: auditory influence on visual attention in hemispatial neglect.
    Van Vleet TM; Robertson LC
    J Cogn Neurosci; 2006 Aug; 18(8):1368-79. PubMed ID: 16859421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of labial information modifies audiovisual speech perception in cochlear-implanted children.
    Huyse A; Berthommier F; Leybaert J
    Ear Hear; 2013; 34(1):110-21. PubMed ID: 23059850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of attentional mechanisms in audiovisual links.
    Dufour A
    Exp Brain Res; 1999 May; 126(2):215-22. PubMed ID: 10369144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task.
    Chen Y; Huang X; Luo Y; Peng C; Liu C
    Brain Res; 2010 Apr; 1325():100-11. PubMed ID: 20170647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural basis of auditory-induced shifts in visual time-order perception.
    McDonald JJ; Teder-Sälejärvi WA; Di Russo F; Hillyard SA
    Nat Neurosci; 2005 Sep; 8(9):1197-202. PubMed ID: 16056224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.