BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17429474)

  • 21. Scanning ophthalmoscope retinal image registration using one-dimensional deformation fields.
    Faisan S; Lara D; Paterson C
    Opt Express; 2011 Feb; 19(5):4157-69. PubMed ID: 21369245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-domain optical coherence tomography with digital holographic microscopy.
    Massatsch P; Charrière F; Cuche E; Marquet P; Depeursinge CD
    Appl Opt; 2005 Apr; 44(10):1806-12. PubMed ID: 15813516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoimaging with a compact extreme-ultraviolet laser.
    Vaschenko G; Brizuela F; Brewer C; Grisham M; Mancini H; Menoni CS; Marconi MC; Rocca JJ; Chao W; Liddle JA; Anderson EH; Attwood DT; Vinogradov AV; Artioukov IA; Pershyn YP; Kondratenko VV
    Opt Lett; 2005 Aug; 30(16):2095-7. PubMed ID: 16127921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confocal light absorption and scattering spectroscopic microscopy.
    Fang H; Qiu L; Vitkin E; Zaman MM; Andersson C; Salahuddin S; Kimerer LM; Cipolloni PB; Modell MD; Turner BS; Keates SE; Bigio I; Itzkan I; Freedman SD; Bansil R; Hanlon EB; Perelman LT
    Appl Opt; 2007 Apr; 46(10):1760-9. PubMed ID: 17356619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of confocal scanning laser ophthalmoscope design.
    LaRocca F; Dhalla AH; Kelly MP; Farsiu S; Izatt JA
    J Biomed Opt; 2013 Jul; 18(7):076015. PubMed ID: 23864013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dependence of transverse and longitudinal resolutions on incident Gaussian beam widths in the illumination part of optical scanning microscopy.
    Chon HS; Park G; Lee SB; Yoon S; Kim J; Lee JH; An K
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):60-7. PubMed ID: 17164843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-infrared laser tomographic imaging with right-angled scattered coherent light using an optical heterodyne-detection-based confocal scanning system.
    Nishidate I; Goto M; Sasaki Y; Yuasa T; Devaraj B; Niizeki K; Akatsuka T
    Appl Opt; 2007 Apr; 46(11):2123-30. PubMed ID: 17384729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved differential confocal microscopy with ultrahigh signal-to-noise ratio and reflectance disturbance resistibility.
    Liu J; Tan J; Bin H; Wang Y
    Appl Opt; 2009 Nov; 48(32):6195-201. PubMed ID: 19904316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upconversion fiber-optic confocal microscopy under near-infrared pumping.
    Kim DH; Kang JU; Ilev IK
    Opt Lett; 2008 Mar; 33(5):425-7. PubMed ID: 18311280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus.
    Indebetouw G; El Maghnouji A; Foster R
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):892-8. PubMed ID: 15898548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.
    Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y
    J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.
    Burns SA; Tumbar R; Elsner AE; Ferguson D; Hammer DX
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1313-26. PubMed ID: 17429477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Large-scale imaging of corneal nerve fibres by guided eye movements].
    Köhler B; Allgeier S; Eberle F; Maier S; Peschel S; Reichert KM; Stachs O
    Klin Monbl Augenheilkd; 2014 Dec; 231(12):1170-3. PubMed ID: 25519503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography.
    Wang Y; Tomov I; Nelson JS; Chen Z; Lim H; Wise F
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1492-9. PubMed ID: 16134843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase-shift resolving confocal microscopy with high axial resolution, wide range and reflectance disturbance resistibility.
    Liu J; Tan J; Zhao C; Ge Z; Zhang D
    Opt Express; 2009 Aug; 17(18):16281-90. PubMed ID: 19724627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer-controlled optical scanning tile microscope.
    Wang C; Shumyatsky P; Zeng F; Zevallos M; Alfano RR
    Appl Opt; 2006 Feb; 45(6):1148-52. PubMed ID: 16523776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Three-dimensional confocal laser scanning microscopy of the corneal nerve structure].
    Stachs O; Knappe S; Zhivov A; Kraak R; Stave J; Guthoff RF
    Klin Monbl Augenheilkd; 2006 Jul; 223(7):583-8. PubMed ID: 16855941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes.
    Glazowski C; Rajadhyaksha M
    J Biomed Opt; 2012 Aug; 17(8):085001. PubMed ID: 23224184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.
    Zhang J; Nelson JS; Chen Z
    Opt Lett; 2005 Jan; 30(2):147-9. PubMed ID: 15675695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.