These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Time-resolved circular dichroism in carbonmonoxy-myoglobin: the central role of the proximal histidine. Dartigalongue T; Hache F Chirality; 2006 May; 18(4):273-8. PubMed ID: 16534800 [TBL] [Abstract][Full Text] [Related]
3. Calculation of the circular dichroism spectra of carbon monoxy- and deoxy myoglobin: interpretation of a time-resolved circular dichroism experiment. Dartigalongue T; Hache F J Chem Phys; 2005 Nov; 123(18):184901. PubMed ID: 16292933 [TBL] [Abstract][Full Text] [Related]
4. N-terminal labeling of proteins by the Pictet-Spengler reaction. Sasaki T; Kodama K; Suzuki H; Fukuzawa S; Tachibana K Bioorg Med Chem Lett; 2008 Aug; 18(16):4550-3. PubMed ID: 18667304 [TBL] [Abstract][Full Text] [Related]
5. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility. Tao Y; Huang Y; Gao Z; Zhuang H; Zhou A; Tan Y; Li D; Sun S J Synchrotron Radiat; 2009 Nov; 16(Pt 6):857-63. PubMed ID: 19844024 [TBL] [Abstract][Full Text] [Related]
6. First-principles calculations of protein circular dichroism in the far-ultraviolet and beyond. Oakley MT; Bulheller BM; Hirst JD Chirality; 2006 May; 18(5):340-7. PubMed ID: 16557524 [TBL] [Abstract][Full Text] [Related]
7. Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin. Milder SJ; Bjorling SC; Kuntz ID; Kliger DS Biophys J; 1988 May; 53(5):659-64. PubMed ID: 3390516 [TBL] [Abstract][Full Text] [Related]
8. Circular dichroism user facility at the National Synchrotron Light Source: estimation of protein secondary structure. Sutherland JC; Emrick A; France LL; Monteleone DC; Trunk J Biotechniques; 1992 Oct; 13(4):588-90. PubMed ID: 1476728 [TBL] [Abstract][Full Text] [Related]
9. Kinetic study on myoglobin refolding monitored by five optical probe stopped-flow methods. Chiba K; Ikai A; Kawamura-Konishi Y; Kihara H Proteins; 1994 Jun; 19(2):110-9. PubMed ID: 8090705 [TBL] [Abstract][Full Text] [Related]
10. Protein conformational relaxation following photodissociation of CO from carbonmonoxymyoglobin: picosecond circular dichroism and absorption studies. Xie XL; Simon JD Biochemistry; 1991 Apr; 30(15):3682-92. PubMed ID: 2015224 [TBL] [Abstract][Full Text] [Related]
13. Picosecond structural dynamics of myoglobin following photodissociation of carbon monoxide as revealed by ultraviolet time-resolved resonance Raman spectroscopy. Sato A; Mizutani Y Biochemistry; 2005 Nov; 44(45):14709-14. PubMed ID: 16274218 [TBL] [Abstract][Full Text] [Related]
14. Compact optical cell system for vacuum ultraviolet absorption and circular dichroism spectroscopy and its application to aqueous solution sample. Tanaka M; Yagi-Watanabe K; Kaneko F; Nakagawa K Chirality; 2008 Sep; 20(9):1023-8. PubMed ID: 18473342 [TBL] [Abstract][Full Text] [Related]
15. Novel circular dichroism spectroscopic approach for detection of ligand binding of proteins: avidin as example. Zsila F Anal Biochem; 2009 Aug; 391(2):154-6. PubMed ID: 19450538 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic evidence for nanosecond protein relaxation after photodissociation of myoglobin-CO. Esquerra RM; Goldbeck RA; Kim-Shapiro DB; Kliger DS Biochemistry; 1998 Dec; 37(50):17527-36. PubMed ID: 9860868 [TBL] [Abstract][Full Text] [Related]
17. Circular dichroism and absorption spectroscopy of merocyanine dimer aggregates: molecular properties and exciton transfer dynamics from time-dependent quantum calculations. Seibt J; Lohr A; Würthner F; Engel V Phys Chem Chem Phys; 2007 Dec; 9(47):6214-8. PubMed ID: 18046470 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic studies on the interaction of Ga3+-hypocrellin A with myoglobin. Xie W; Wei S; Liu J; Ge X; Zhou L; Zhou J; Shen J Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():109-15. PubMed ID: 24231746 [TBL] [Abstract][Full Text] [Related]
19. Ferrocene-substituted dithio-o-carborane isomers: influence on the native conformation of myoglobin protein. Wu C; Xu B; Zhao J; Jiang Q; Wei F; Jiang H; Wang X; Yan H Chemistry; 2010 Aug; 16(29):8914-22. PubMed ID: 20572183 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric band profile of the Soret band of deoxymyoglobin is caused by electronic and vibronic perturbations of the heme group rather than by a doming deformation. Schweitzer-Stenner R; Gorden JP; Hagarman A J Chem Phys; 2007 Oct; 127(13):135103. PubMed ID: 17919056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]