BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17429654)

  • 1. Central ventilatory control in the South American lungfish, Lepidosiren paradoxa: contributions of pH and CO(2).
    Amin-Naves J; Giusti H; Hoffmann A; Glass ML
    J Comp Physiol B; 2007 Jul; 177(5):529-34. PubMed ID: 17429654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between cerebro-spinal fluid pH and pulmonary ventilation of the South American lungfish, Lepidosiren paradoxa (Fitz.).
    Sanchez AP; Hoffmann A; Rantin FT; Glass ML
    J Exp Zool; 2001 Sep; 290(4):421-5. PubMed ID: 11550190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Components to the acid-base related ventilatory drives in the South American lungfish Lepidosiren paradoxa.
    Amin-Naves J; Giusti H; Hoffmann A; Glass ML
    Respir Physiol Neurobiol; 2007 Jan; 155(1):35-40. PubMed ID: 16713402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory control of acid-base status in lungfish.
    Nunan BLCZ; Silva AS; Wang T; da Silva GSF
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Nov; 237():110533. PubMed ID: 31398391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acute temperature changes on aerial and aquatic gas exchange, pulmonary ventilation and blood gas status in the South American lungfish, Lepidosiren paradoxa.
    Amin-Naves J; Giusti H; Glass ML
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jun; 138(2):133-9. PubMed ID: 15275647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men.
    Keir DA; Duffin J; Millar PJ; Floras JS
    J Physiol; 2019 Jul; 597(13):3281-3296. PubMed ID: 31087324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of temperature on central chemical control of ventilation in the alligator Alligator mississippiensis.
    Branco LG; Wood SC
    J Exp Biol; 1993 Jun; 179():261-72. PubMed ID: 8340730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cl- replacement alters the ventilatory response to central chemoreceptor stimulation.
    Davidson TL; Sullivan MP; Swanson KE; Adams JM
    J Appl Physiol (1985); 1993 Jan; 74(1):280-5. PubMed ID: 8444704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphometric comparison of the respiratory organs in the South American lungfish Lepidosiren paradoxa (Dipnoi).
    de Moraes MF; Holler S; da Costa OT; Glass ML; Fernandes MN; Perry SF
    Physiol Biochem Zool; 2005; 78(4):546-59. PubMed ID: 15957109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulmonary oxygen diffusing capacity of the South American lungfish Lepidosiren paradoxa: physiological values by the Bohr method.
    Bassi M; Klein W; Fernandes MN; Perry SF; Glass ML
    Physiol Biochem Zool; 2005; 78(4):560-9. PubMed ID: 15957110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-base regulation in the South American lungfish Lepidosiren paradoxa: effects of prolonged hypercarbia on blood gases and pulmonary ventilation.
    Sanchez AP; Giusti H; Bassi M; Glass ML
    Physiol Biochem Zool; 2005; 78(6):908-15. PubMed ID: 16228930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential respiratory effects of HCO3- and CO2 applied on ventral medullary surface of rats.
    Tojima H; Kuriyama T; Fukuda Y
    J Appl Physiol (1985); 1991 May; 70(5):2217-25. PubMed ID: 1907605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute effects of temperature and hypercarbia on cutaneous and branchial gas exchange in the South American lungfish, Lepidosiren paradoxa.
    Zena LA; BĂ­cego KC; da Silva GS; Giusti H; Glass ML; Sanchez AP
    J Therm Biol; 2017 Jan; 63():112-118. PubMed ID: 28010808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central-peripheral chemoreceptor interaction in awake cerebrospinal fluid-perfused goats.
    Smith CA; Jameson LC; Mitchell GS; Musch TI; Dempsey JA
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jun; 56(6):1541-9. PubMed ID: 6735813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of subanesthetic isoflurane on ventilatory control in humans.
    van den Elsen M; Dahan A; DeGoede J; Berkenbosch A; van Kleef J
    Anesthesiology; 1995 Sep; 83(3):478-90. PubMed ID: 7661348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiorespiratory responses to hypercarbia in tambaqui Colossoma macropomum: chemoreceptor orientation and specificity.
    Gilmour KM; Milsom WK; Rantin FT; Reid SG; Perry SF
    J Exp Biol; 2005 Mar; 208(Pt 6):1095-107. PubMed ID: 15767310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central chemoreceptor drive to breathing in unanesthetized toads, Bufo paracnemis.
    Branco LG; Glass ML; Hoffmann A
    Respir Physiol; 1992 Feb; 87(2):195-204. PubMed ID: 1565892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2/H(+) sensing: peripheral and central chemoreception.
    Lahiri S; Forster RE
    Int J Biochem Cell Biol; 2003 Oct; 35(10):1413-35. PubMed ID: 12818238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of subanesthetic halothane on the ventilatory responses to hypercapnia and acute hypoxia in healthy volunteers.
    Dahan A; van den Elsen MJ; Berkenbosch A; DeGoede J; Olievier IC; van Kleef JW; Bovill JG
    Anesthesiology; 1994 Apr; 80(4):727-38. PubMed ID: 8024126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of carbon dioxide and pH on central chemoreceptors in the rat in vitro.
    Harada Y; Kuno M; Wang YZ
    J Physiol; 1985 Nov; 368():679-93. PubMed ID: 3001297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.