BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17429694)

  • 1. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants.
    Oshino T; Abiko M; Saito R; Ichiishi E; Endo M; Kawagishi-Kobayashi M; Higashitani A
    Mol Genet Genomics; 2007 Jul; 278(1):31-42. PubMed ID: 17429694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations.
    Oshino T; Miura S; Kikuchi S; Hamada K; Yano K; Watanabe M; Higashitani A
    Plant Cell Environ; 2011 Feb; 34(2):284-90. PubMed ID: 20955225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global transcriptome analysis of two ameiotic1 alleles in maize anthers: defining steps in meiotic entry and progression through prophase I.
    Nan GL; Ronceret A; Wang RC; Fernandes JF; Cande WZ; Walbot V
    BMC Plant Biol; 2011 Aug; 11():120. PubMed ID: 21867558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.).
    Wang Z; Liang Y; Li C; Xu Y; Lan L; Zhao D; Chen C; Xu Z; Xue Y; Chong K
    Plant Mol Biol; 2005 Jul; 58(5):721-37. PubMed ID: 16158245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice.
    Deveshwar P; Bovill WD; Sharma R; Able JA; Kapoor S
    BMC Plant Biol; 2011 May; 11():78. PubMed ID: 21554676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development.
    Endo M; Tsuchiya T; Hamada K; Kawamura S; Yano K; Ohshima M; Higashitani A; Watanabe M; Kawagishi-Kobayashi M
    Plant Cell Physiol; 2009 Nov; 50(11):1911-22. PubMed ID: 19808807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis.
    Yi J; Kim SR; Lee DY; Moon S; Lee YS; Jung KH; Hwang I; An G
    Plant J; 2012 Apr; 70(2):256-70. PubMed ID: 22111585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development.
    Li L; Li Y; Song S; Deng H; Li N; Fu X; Chen G; Yuan L
    Planta; 2015 Jan; 241(1):157-66. PubMed ID: 25236969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development.
    Ye Q; Zhu W; Li L; Zhang S; Yin Y; Ma H; Wang X
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6100-5. PubMed ID: 20231470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barley TAPETAL DEVELOPMENT and FUNCTION1 (HvTDF1) gene reveals conserved and unique roles in controlling anther tapetum development in dicot and monocot plants.
    Hua M; Yin W; Fernández Gómez J; Tidy A; Xing G; Zong J; Shi S; Wilson ZA
    New Phytol; 2023 Oct; 240(1):173-190. PubMed ID: 37563927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development.
    Millar AA; Gubler F
    Plant Cell; 2005 Mar; 17(3):705-21. PubMed ID: 15722475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of tapetum-specific genes by comparing global gene expression of four different male sterile lines in Brassica oleracea.
    Ma Y; Kang J; Wu J; Zhu Y; Wang X
    Plant Mol Biol; 2015 Apr; 87(6):541-54. PubMed ID: 25711971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The major olive pollen allergen (Ole e I) shows both gametophytic and sporophytic expression during anther development, and its synthesis and storage takes place in the RER.
    de Dios Alché J; Castro AJ; Olmedilla A; Fernández MC; Rodríguez R; Villalba M; Rodríguez-García MI
    J Cell Sci; 1999 Aug; 112 ( Pt 15)():2501-9. PubMed ID: 10393806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid.
    An YQ; Lin L
    BMC Plant Biol; 2011 Jun; 11():105. PubMed ID: 21668981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proteome of developing barley anthers during meiotic prophase I.
    Lewandowska D; Orr J; Schreiber M; Colas I; Ramsay L; Zhang R; Waugh R
    J Exp Bot; 2022 Mar; 73(5):1464-1482. PubMed ID: 34758083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development.
    Kapazoglou A; Engineer C; Drosou V; Kalloniati C; Tani E; Tsaballa A; Kouri ED; Ganopoulos I; Flemetakis E; Tsaftaris AS
    BMC Plant Biol; 2012 Sep; 12():166. PubMed ID: 22985436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Male reproductive development: gene expression profiling of maize anther and pollen ontogeny.
    Ma J; Skibbe DS; Fernandes J; Walbot V
    Genome Biol; 2008; 9(12):R181. PubMed ID: 19099579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Various spatiotemporal expression profiles of anther-expressed genes in rice.
    Hobo T; Suwabe K; Aya K; Suzuki G; Yano K; Ishimizu T; Fujita M; Kikuchi S; Hamada K; Miyano M; Fujioka T; Kaneko F; Kazama T; Mizuta Y; Takahashi H; Shiono K; Nakazono M; Tsutsumi N; Nagamura Y; Kurata N; Watanabe M; Matsuoka M
    Plant Cell Physiol; 2008 Oct; 49(10):1417-28. PubMed ID: 18776202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray and differential display identify genes involved in jasmonate-dependent anther development.
    Mandaokar A; Kumar VD; Amway M; Browse J
    Plant Mol Biol; 2003 Jul; 52(4):775-86. PubMed ID: 13677466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of floral morphoanatomy and identification of marker genes preferentially expressed during specific stages of cotton flower development.
    de Moura SM; Rossi ML; Artico S; Grossi-de-Sa MF; Martinelli AP; Alves-Ferreira M
    Planta; 2020 Oct; 252(4):71. PubMed ID: 33001252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.