BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 17429748)

  • 1. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India.
    Maiti SK; Jaiswal S
    Environ Monit Assess; 2008 Jan; 136(1-3):355-70. PubMed ID: 17429748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioavailability of metals in fly ash and their bioaccumulation in naturally occurring vegetation: a pilot scale study.
    Maiti SK; Nandhini S
    Environ Monit Assess; 2006 May; 116(1-3):263-73. PubMed ID: 16779594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.
    Jambhulkar HP; Juwarkar AA
    Ecotoxicol Environ Saf; 2009 May; 72(4):1122-8. PubMed ID: 19171381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metals leaching in Indian fly ash.
    Prasad B; Mondal KK
    J Environ Sci Eng; 2008 Apr; 50(2):127-32. PubMed ID: 19295096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area.
    Singh R; Singh DP; Kumar N; Bhargava SK; Barman SC
    J Environ Biol; 2010 Jul; 31(4):421-30. PubMed ID: 21186714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India.
    Pandey SK; Bhattacharya T; Chakraborty S
    Int J Phytoremediation; 2016; 18(1):87-93. PubMed ID: 26147810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal remediation potential of naturally occurring plants growing on barren fly ash dumps.
    Maiti D; Pandey VC
    Environ Geochem Health; 2021 Apr; 43(4):1415-1426. PubMed ID: 32737634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge.
    Su DC; Wong JW
    Environ Int; 2004 Jan; 29(7):895-900. PubMed ID: 14592566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced phytoremediation of metals from fly ash mediated by plant growth promoting rhizobacteria.
    Tiwari S; Singh SN; Garg SK
    J Environ Biol; 2013 Jul; 34(4):717-27. PubMed ID: 24640248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant "Kolubara".
    Krgović R; Trifković J; Milojković-Opsenica D; Manojlović D; Marković M; Mutić J
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10506-15. PubMed ID: 25728199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability.
    Gupta AK; Sinha S
    J Hazard Mater; 2006 Aug; 136(2):371-8. PubMed ID: 16434138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps.
    Tiwari S; Kumari B; Singh SN
    Bioresour Technol; 2008 Mar; 99(5):1305-10. PubMed ID: 17382536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhizosphere properties and heavy metal accumulation of plants growing in the fly ash dumpsite, Morupule power plant, Botswana.
    Gajaje K; Ultra VU; David PW; Rantong G
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20637-20649. PubMed ID: 33405121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbe-induced changes in metal extractability from fly ash.
    Tiwari S; Kumari B; Singh SN
    Chemosphere; 2008 Apr; 71(7):1284-94. PubMed ID: 18262591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decontamination and/or revegetation of fly ash dykes through naturally growing plants.
    Gupta AK; Sinha S
    J Hazard Mater; 2008 May; 153(3):1078-87. PubMed ID: 17964714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of coal fly ash and use of plants growing in ash pond for phytoremediation of metals from contaminated agricultural land.
    Kisku GC; Kumar V; Sahu P; Kumar P; Kumar N
    Int J Phytoremediation; 2018 Mar; 20(4):330-337. PubMed ID: 29584466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study on elemental composition and DNA damage in leaves of a weedy plant species, Cassia occidentalis, growing wild on weathered fly ash and soil.
    Love A; Tandon R; Banerjee BD; Babu CR
    Ecotoxicology; 2009 Oct; 18(7):791-801. PubMed ID: 19484382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of bioaccumulation of heavy metal by Pteris vittata L. growing in the vicinity of fly ash.
    Kumari A; Lal B; Pakade YB; Chand P
    Int J Phytoremediation; 2011 Sep; 13(8):779-87. PubMed ID: 21972518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.
    Kumari A; Lal B; Rai UN
    Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.