BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17429995)

  • 1. Approximate values for force constant and wave number associated with a low-frequency concerted motion in proteins can be evaluated by a comparison of X-ray structures.
    Merlino A; Sica F; Mazzarella L
    J Phys Chem B; 2007 May; 111(19):5483-6. PubMed ID: 17429995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global and local motions in ribonuclease A: a molecular dynamics study.
    Merlino A; Vitagliano L; Ceruso MA; Di Nola A; Mazzarella L
    Biopolymers; 2002 Nov; 65(4):274-83. PubMed ID: 12382288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtle functional collective motions in pancreatic-like ribonucleases: from ribonuclease A to angiogenin.
    Merlino A; Vitagliano L; Ceruso MA; Mazzarella L
    Proteins; 2003 Oct; 53(1):101-10. PubMed ID: 12945053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic.
    Krebs WG; Alexandrov V; Wilson CA; Echols N; Yu H; Gerstein M
    Proteins; 2002 Sep; 48(4):682-95. PubMed ID: 12211036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective motions in proteins investigated by X-ray diffuse scattering.
    Mizuguchi K; Kidera A; Go N
    Proteins; 1994 Jan; 18(1):34-48. PubMed ID: 8146121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of functional motion in trypsin crystal structures.
    Schmidt A; Lamzin VS
    Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1132-9. PubMed ID: 16041079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency motions in protein molecules. Beta-sheet and beta-barrel.
    Chou KC
    Biophys J; 1985 Aug; 48(2):289-97. PubMed ID: 4052563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry.
    van Vlijmen HW; Karplus M
    J Mol Biol; 2005 Jul; 350(3):528-42. PubMed ID: 15922356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical evaluation of simple network models of protein dynamics and their comparison with crystallographic B-factors.
    Soheilifard R; Makarov DE; Rodin GJ
    Phys Biol; 2008 Jun; 5(2):026008. PubMed ID: 18577808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SOMO (SOlution MOdeler) differences between X-Ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics.
    Rai N; Nöllmann M; Spotorno B; Tassara G; Byron O; Rocco M
    Structure; 2005 May; 13(5):723-34. PubMed ID: 15893663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docking and scoring protein complexes: CAPRI 3rd Edition.
    Lensink MF; Méndez R; Wodak SJ
    Proteins; 2007 Dec; 69(4):704-18. PubMed ID: 17918726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The backrub motion: how protein backbone shrugs when a sidechain dances.
    Davis IW; Arendall WB; Richardson DC; Richardson JS
    Structure; 2006 Feb; 14(2):265-74. PubMed ID: 16472746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of domain motions in large proteins.
    Hinsen K; Thomas A; Field MJ
    Proteins; 1999 Feb; 34(3):369-82. PubMed ID: 10024023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the potential of normal-mode analysis for solving difficult molecular-replacement problems.
    Suhre K; Sanejouand YH
    Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):796-9. PubMed ID: 15039589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple solvent crystal structures of ribonuclease A: an assessment of the method.
    Dechene M; Wink G; Smith M; Swartz P; Mattos C
    Proteins; 2009 Sep; 76(4):861-81. PubMed ID: 19291738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DOCKGROUND system of databases for protein recognition studies: unbound structures for docking.
    Gao Y; Douguet D; Tovchigrechko A; Vakser IA
    Proteins; 2007 Dec; 69(4):845-51. PubMed ID: 17803215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions.
    Søndergaard CR; Garrett AE; Carstensen T; Pollastri G; Nielsen JE
    J Med Chem; 2009 Sep; 52(18):5673-84. PubMed ID: 19711919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein structure determination by x-ray crystallography.
    Ilari A; Savino C
    Methods Mol Biol; 2008; 452():63-87. PubMed ID: 18563369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.