These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 17430022)

  • 1. Dynamics of quantum dissipation systems interacting with fermion and boson grand canonical bath ensembles: hierarchical equations of motion approach.
    Jin J; Welack S; Luo J; Li XQ; Cui P; Xu RX; Yan Y
    J Chem Phys; 2007 Apr; 126(13):134113. PubMed ID: 17430022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach.
    Jin J; Zheng X; Yan Y
    J Chem Phys; 2008 Jun; 128(23):234703. PubMed ID: 18570515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of quantum dissipation systems interacting with bosonic canonical bath: hierarchical equations of motion approach.
    Xu RX; Yan Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031107. PubMed ID: 17500668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact quantum master equation via the calculus on path integrals.
    Xu RX; Cui P; Li XQ; Mo Y; Yan Y
    J Chem Phys; 2005 Jan; 122(4):41103. PubMed ID: 15740228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient hierarchical Liouville space propagator to quantum dissipative dynamics.
    Shi Q; Chen L; Nan G; Xu RX; Yan Y
    J Chem Phys; 2009 Feb; 130(8):084105. PubMed ID: 19256595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-equilibrium spin-boson model: counting statistics and the heat exchange fluctuation theorem.
    Nicolin L; Segal D
    J Chem Phys; 2011 Oct; 135(16):164106. PubMed ID: 22047227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems.
    Hu J; Luo M; Jiang F; Xu RX; Yan Y
    J Chem Phys; 2011 Jun; 134(24):244106. PubMed ID: 21721611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on quantum transfer mechanisms.
    Ding JJ; Xu RX; Yan Y
    J Chem Phys; 2012 Jun; 136(22):224103. PubMed ID: 22713032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biexponential theory of Drude dissipation via hierarchical quantum master equation.
    Tian BL; Ding JJ; Xu RX; Yan Y
    J Chem Phys; 2010 Sep; 133(11):114112. PubMed ID: 20866131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of ultrafast laser pulses on electron transfer in molecular wires studied by a non-Markovian density-matrix approach.
    Welack S; Schreiber M; Kleinekathöfer U
    J Chem Phys; 2006 Jan; 124(4):044712. PubMed ID: 16460205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations.
    Hsieh CY; Cao J
    J Chem Phys; 2018 Jan; 148(1):014103. PubMed ID: 29306296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semiclassical generalized quantum master equation for an arbitrary system-bath coupling.
    Shi Q; Geva E
    J Chem Phys; 2004 Jun; 120(22):10647-58. PubMed ID: 15268091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes.
    Liu H; Zhu L; Bai S; Shi Q
    J Chem Phys; 2014 Apr; 140(13):134106. PubMed ID: 24712779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental aspects of quantum Brownian motion.
    Hänggi P; Ingold GL
    Chaos; 2005 Jun; 15(2):26105. PubMed ID: 16035907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion.
    Chelli R; Marsili S; Barducci A; Procacci P
    J Chem Phys; 2007 Jan; 126(4):044502. PubMed ID: 17286482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling quantum dissipation interaction via stochastic fields.
    Shao J
    J Chem Phys; 2004 Mar; 120(11):5053-6. PubMed ID: 15267371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. System-bath entanglement theorem with Gaussian environments.
    Du PL; Wang Y; Xu RX; Zhang HD; Yan Y
    J Chem Phys; 2020 Jan; 152(3):034102. PubMed ID: 31968964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation.
    Zhang ML; Ka BJ; Geva E
    J Chem Phys; 2006 Jul; 125(4):44106. PubMed ID: 16942133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Markovian stochastic Schrödinger equations in different temperature regimes: a study of the spin-boson model.
    de Vega I; Alonso D; Gaspard P; Strunz WT
    J Chem Phys; 2005 Mar; 122(12):124106. PubMed ID: 15836368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of a multimode system coupled to multiple heat baths probed by two-dimensional infrared spectroscopy.
    Ishizaki A; Tanimura Y
    J Phys Chem A; 2007 Sep; 111(38):9269-76. PubMed ID: 17880172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.