These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 17430093)

  • 1. The ambivalent nature of T-cell infiltration in the central nervous system of patients with multiple sclerosis.
    Vanderlocht J; Hellings N; Hendriks JJ; Stinissen P
    Crit Rev Immunol; 2007; 27(1):1-13. PubMed ID: 17430093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoreactive T lymphocytes in multiple sclerosis: pathogenic role and therapeutic targeting.
    Stinissen P; Raus J
    Acta Neurol Belg; 1999 Mar; 99(1):65-9. PubMed ID: 10218096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Sclerosis and T Lymphocytes: An Entangled Story.
    Legroux L; Arbour N
    J Neuroimmune Pharmacol; 2015 Dec; 10(4):528-46. PubMed ID: 25946987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis.
    De Santi L; Annunziata P; Sessa E; Bramanti P
    J Neurol Sci; 2009 Dec; 287(1-2):17-26. PubMed ID: 19758606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoimmune pathogenesis of multiple sclerosis: role of autoreactive T lymphocytes and new immunotherapeutic strategies.
    Stinissen P; Raus J; Zhang J
    Crit Rev Immunol; 1997; 17(1):33-75. PubMed ID: 9034723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroinflammation and neuroprotection: an update on (future) neurotrophin-related strategies in multiple sclerosis treatment.
    De Santi L; Polimeni G; Cuzzocrea S; Esposito E; Sessa E; Annunziata P; Bramanti P
    Curr Med Chem; 2011; 18(12):1775-84. PubMed ID: 21466473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature, nurture, and microbes: The development of multiple sclerosis.
    Wekerle H
    Acta Neurol Scand; 2017 Nov; 136 Suppl 201():22-25. PubMed ID: 29068487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-alpha-induced oligodendrocyte apoptosis.
    Vanderlocht J; Hellings N; Hendriks JJ; Vandenabeele F; Moreels M; Buntinx M; Hoekstra D; Antel JP; Stinissen P
    J Neurosci Res; 2006 Apr; 83(5):763-74. PubMed ID: 16477612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: boosting autoimmunity to fight-off chronic neuroinflammation.
    Schwartz M; Baruch K
    J Autoimmun; 2014 Nov; 54():8-14. PubMed ID: 25199710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Adaptative immunity and pathophysiology of multiple sclerosis].
    Salou M; Elong Ngono A; Garcia A; Michel L; Laplaud DA
    Rev Med Interne; 2013 Aug; 34(8):479-86. PubMed ID: 23622732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune tolerance and control of CNS autoimmunity: from animal models to MS patients.
    Cassan C; Liblau RS
    J Neurochem; 2007 Feb; 100(4):883-92. PubMed ID: 17181557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity.
    Waisman A; Johann L
    J Mol Med (Berl); 2018 Dec; 96(12):1279-1292. PubMed ID: 30386908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate, T cells and multiple sclerosis.
    Levite M
    J Neural Transm (Vienna); 2017 Jul; 124(7):775-798. PubMed ID: 28236206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain.
    Becher B; Bechmann I; Greter M
    J Mol Med (Berl); 2006 Jul; 84(7):532-43. PubMed ID: 16773356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke.
    Lopes Pinheiro MA; Kooij G; Mizee MR; Kamermans A; Enzmann G; Lyck R; Schwaninger M; Engelhardt B; de Vries HE
    Biochim Biophys Acta; 2016 Mar; 1862(3):461-71. PubMed ID: 26527183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leukemia inhibitory factor tips the immune balance towards regulatory T cells in multiple sclerosis.
    Janssens K; Van den Haute C; Baekelandt V; Lucas S; van Horssen J; Somers V; Van Wijmeersch B; Stinissen P; Hendriks JJ; Slaets H; Hellings N
    Brain Behav Immun; 2015 Mar; 45():180-8. PubMed ID: 25514345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the immunopathogenesis of multiple sclerosis.
    Hellings N; Raus J; Stinissen P
    Immunol Res; 2002; 25(1):27-51. PubMed ID: 11868933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunohistochemical identification of T-lymphocytes in the central nervous system of patients with multiple sclerosis and subacute sclerosing panencephalitis.
    Kreth HW; Dunker R; Rodt H; Meyermann R
    J Neuroimmunol; 1982 Apr; 2(2):177-83. PubMed ID: 7040472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging role of IL-16 in cytokine-mediated regulation of multiple sclerosis.
    Skundric DS; Cruikshank WW; Montgomery PC; Lisak RP; Tse HY
    Cytokine; 2015 Oct; 75(2):234-48. PubMed ID: 25703787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The blood-central nervous system barriers actively control immune cell entry into the central nervous system.
    Engelhardt B
    Curr Pharm Des; 2008; 14(16):1555-65. PubMed ID: 18673197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.