These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17430194)

  • 1. Predicting experimental properties of proteins from sequence by machine learning techniques.
    Smialowski P; Martin-Galiano AJ; Cox J; Frishman D
    Curr Protein Pept Sci; 2007 Apr; 8(2):121-33. PubMed ID: 17430194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural genomics experimental pipeline: insights from global target lists.
    O'Toole N; Grabowski M; Otwinowski Z; Minor W; Cygler M
    Proteins; 2004 Aug; 56(2):201-10. PubMed ID: 15211505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target selection for structural genomics.
    Brenner SE
    Nat Struct Biol; 2000 Nov; 7 Suppl():967-9. PubMed ID: 11104002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection.
    Wang H; Wang M; Tan H; Li Y; Zhang Z; Song J
    PLoS One; 2014; 9(8):e105902. PubMed ID: 25148528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein disorder.
    Dosztányi Z; Tompa P
    Methods Mol Biol; 2008; 426():103-15. PubMed ID: 18542859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Crystallizability.
    Smialowski P; Wong P
    Methods Mol Biol; 2016; 1415():341-70. PubMed ID: 27115641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis.
    Goh CS; Lan N; Douglas SM; Wu B; Echols N; Smith A; Milburn D; Montelione GT; Zhao H; Gerstein M
    J Mol Biol; 2004 Feb; 336(1):115-30. PubMed ID: 14741208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for high-throughput comparative modeling: applications to leverage analysis in structural genomics and protein family organization.
    Mirkovic N; Li Z; Parnassa A; Murray D
    Proteins; 2007 Mar; 66(4):766-77. PubMed ID: 17154423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SVMCRYS: an SVM approach for the prediction of protein crystallization propensity from protein sequence.
    Kandaswamy KK; Pugalenthi G; Suganthan PN; Gangal R
    Protein Pept Lett; 2010 Apr; 17(4):423-30. PubMed ID: 20044918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural genomics. Tapping DNA for structures produces a trickle.
    Service RF
    Science; 2002 Nov; 298(5595):948-50. PubMed ID: 12411682
    [No Abstract]   [Full Text] [Related]  

  • 11. A tour of structural genomics.
    Brenner SE
    Nat Rev Genet; 2001 Oct; 2(10):801-9. PubMed ID: 11584296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRYSpred: accurate sequence-based protein crystallization propensity prediction using sequence-derived structural characteristics.
    Mizianty MJ; Kurgan LA
    Protein Pept Lett; 2012 Jan; 19(1):40-9. PubMed ID: 21919861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting experimental properties of integral membrane proteins by a naive Bayes approach.
    Martin-Galiano AJ; Smialowski P; Frishman D
    Proteins; 2008 Mar; 70(4):1243-56. PubMed ID: 17876826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of structural genomics: the first quindecennial.
    Grabowski M; Niedzialkowska E; Zimmerman MD; Minor W
    J Struct Funct Genomics; 2016 Mar; 17(1):1-16. PubMed ID: 26935210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Will my protein crystallize? A sequence-based predictor.
    Smialowski P; Schmidt T; Cox J; Kirschner A; Frishman D
    Proteins; 2006 Feb; 62(2):343-55. PubMed ID: 16315316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural genomics. Protein data justice for all.
    Service RF
    Science; 2000 May; 288(5468):939-41. PubMed ID: 10841704
    [No Abstract]   [Full Text] [Related]  

  • 17. NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline.
    Page R; Peti W; Wilson IA; Stevens RC; Wüthrich K
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1901-5. PubMed ID: 15677718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta prediction of protein crystallization propensity.
    Mizianty MJ; Kurgan L
    Biochem Biophys Res Commun; 2009 Dec; 390(1):10-5. PubMed ID: 19755114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised multi-label collective classification ensemble for functional genomics.
    Wu Q; Ye Y; Ho SS; Zhou S
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S17. PubMed ID: 25521242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning approaches for prediction of linear B-cell epitopes on proteins.
    Söllner J; Mayer B
    J Mol Recognit; 2006; 19(3):200-8. PubMed ID: 16598694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.