BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 1743078)

  • 1. C-band polymorphisms in exotic inbred strains of mice: a method for mapping centromeric ends of chromosomes.
    Akeson EC; Davisson MT
    Cytogenet Cell Genet; 1991; 57(4):217-20. PubMed ID: 1743078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome markers in Mus musculus: differences in C-banding between the subspecies M.m. musculus and M.m. molossinus.
    Dev VG; Miller DA; Tantravahi R; Schreck RR; Roderick TH; Erlanger BF; Miller OJ
    Chromosoma; 1975 Dec; 53(4):335-44. PubMed ID: 1212900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A variant family of mouse minor satellite located on the centromeric region of chromosome 2.
    Hayashi T; Ohtsuka H; Kuwabara K; Mafune Y; Miyashita N; Moriwaki K; Takahashi Y; Kominami R
    Genomics; 1993 Aug; 17(2):490-2. PubMed ID: 8406499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse centromere mapping using oligonucleotide probes that detect variants of the minor satellite.
    Kipling D; Wilson HE; Mitchell AR; Taylor BA; Cooke HJ
    Chromosoma; 1994 Mar; 103(1):46-55. PubMed ID: 8013255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays.
    Modi WS
    Cytogenet Cell Genet; 1993; 62(2-3):142-8. PubMed ID: 8428514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ analysis of centromeric satellite DNA segregating in Mus species crosses.
    Matsuda Y; Chapman VM
    Mamm Genome; 1991; 1(2):71-7. PubMed ID: 1799790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centromeric heterochromatin in the cattle rob(1;29) translocation: alpha-satellite I sequences, in-situ MspI digestion patterns, chromomycin staining and C-bands.
    Chaves R; Heslop-Harrsion JS; Guedes-Pinto H
    Chromosome Res; 2000; 8(7):621-6. PubMed ID: 11117358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-band patterns of chromosomes in 17 strains of mice.
    Yoshida MC; Kodama Y
    Cytogenet Cell Genet; 1983; 35(1):51-6. PubMed ID: 6825472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome markers in Mus musculus: strain differences in C-banding.
    Dev VG; Miller DA; Miller OJ
    Genetics; 1973 Dec; 75(4):663-70. PubMed ID: 4778788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverted duplication involving alpha satellite DNA resulting in a C-negative-band in the qh region of chromosome 16.
    Jalal SM; Law ME; Dewald GW
    Am J Med Genet; 1993 May; 46(3):351-2. PubMed ID: 8488887
    [No Abstract]   [Full Text] [Related]  

  • 11. The chromosomal distribution of the major and minor satellite is not conserved in the genus Mus.
    Wong AK; Biddle FG; Rattner JB
    Chromosoma; 1990 Jul; 99(3):190-5. PubMed ID: 2397658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytogenetics of a new cytotype of African Mus (subgenus Nannomys) minutoides (Rodentia, Muridae) from Kenya: C- and G- banding and distribution of (TTAGGG)n telomeric sequences.
    Castiglia R; Garagna S; Merico V; Oguge N; Corti M
    Chromosome Res; 2006; 14(5):587-94. PubMed ID: 16823620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of novel centromeric polymorphisms associated with alpha satellite DNA from human chromosome 11.
    Waye JS; Greig GM; Willard HF
    Hum Genet; 1987 Oct; 77(2):151-6. PubMed ID: 2888719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspecific backcrosses provide an important new tool for centromere mapping of mouse chromosomes.
    Ceci JD; Matsuda Y; Grubber JM; Jenkins NA; Copeland NG; Chapman VM
    Genomics; 1994 Feb; 19(3):515-24. PubMed ID: 8188294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of centromeric heterochromatin C-band polymorphism with breeding failure in mice.
    Marciniak M; Lenartowicz M; Golas A; Styrna J
    Folia Biol (Krakow); 2010; 58(3-4):251-5. PubMed ID: 20968193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human (Homo sapiens) and chimpanzee (Pan troglodytes) share similar ancestral centromeric alpha satellite DNA sequences but other fractions of heterochromatin differ considerably.
    Luke S; Verma RS
    Am J Phys Anthropol; 1995 Jan; 96(1):63-71. PubMed ID: 7726296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies--a valuable resource of phenotypic variations and genomic polymorphisms.
    Gregorová S; Forejt J
    Folia Biol (Praha); 2000; 46(1):31-41. PubMed ID: 10730880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat.
    Koo DH; Tiwari VK; Hřibová E; Doležel J; Friebe B; Gill BS
    Cytogenet Genome Res; 2016; 148(4):314-21. PubMed ID: 27403741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere.
    Kipling D; Ackford HE; Taylor BA; Cooke HJ
    Genomics; 1991 Oct; 11(2):235-41. PubMed ID: 1685135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential segregation of marker chromosomes 14 and 18 in mouse recombinant inbred strains derived from the KE and CBA/Kw strains.
    Lenartowicz M; Wójcik A
    Folia Biol (Krakow); 1999; 47(3-4):131-4. PubMed ID: 10754792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.