BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17431524)

  • 1. Separable cooperative and localized translational motions of water confined by a chemically heterogeneous environment.
    Malardier-Jugroot C; Head-Gordon T
    Phys Chem Chem Phys; 2007 Apr; 9(16):1962-71. PubMed ID: 17431524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and water dynamics of aqueous peptide solutions in the presence of co-solvents.
    Malardier-Jugroot C; Bowron DT; Soper AK; Johnson ME; Head-Gordon T
    Phys Chem Chem Phys; 2010 Jan; 12(2):382-92. PubMed ID: 20023816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: from dry powder to highly concentrated solutions.
    Russo D; Teixeira J; Ollivier J
    J Chem Phys; 2009 Jun; 130(23):235101. PubMed ID: 19548762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous peptides as experimental models for hydration water dynamics near protein surfaces.
    Malardier-Jugroot C; Johnson ME; Murarka RK; Head-Gordon T
    Phys Chem Chem Phys; 2008 Aug; 10(32):4903-8. PubMed ID: 18688534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of surface water in ZrO2 studied by quasielastic neutron scattering.
    Mamontov E
    J Chem Phys; 2004 Nov; 121(18):9087-97. PubMed ID: 15527375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study.
    González Sánchez F; Jurányi F; Gimmi T; Van Loon L; Unruh T; Diamond LW
    J Chem Phys; 2008 Nov; 129(17):174706. PubMed ID: 19045369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data.
    Khodadadi S; Pawlus S; Sokolov AP
    J Phys Chem B; 2008 Nov; 112(45):14273-80. PubMed ID: 18942780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics.
    Caronna C; Natali F; Cupane A
    Biophys Chem; 2005 Aug; 116(3):219-25. PubMed ID: 15908102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution neutron-scattering study of slow dynamics of surface water molecules in zirconium oxide.
    Mamontov E
    J Chem Phys; 2005 Jul; 123(2):24706. PubMed ID: 16050765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Water in NaxCoO2.yH2O.
    Jalarvo N; Bordallo HN; Aliouane N; Adams MA; Pieper J; Argyriou DN
    J Phys Chem B; 2008 Jan; 112(3):703-9. PubMed ID: 18092769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single particle and collective hydration dynamics for hydrophobic and hydrophilic peptides.
    Murarka RK; Head-Gordon T
    J Chem Phys; 2007 Jun; 126(21):215101. PubMed ID: 17567218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration dynamics near a model protein surface.
    Russo D; Hura G; Head-Gordon T
    Biophys J; 2004 Mar; 86(3):1852-62. PubMed ID: 14990511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent and lipid dynamics of hydrated lipid bilayers by incoherent quasielastic neutron scattering.
    Swenson J; Kargl F; Berntsen P; Svanberg C
    J Chem Phys; 2008 Jul; 129(4):045101. PubMed ID: 18681680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation processes in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate.
    Triolo A; Russina O; Hardacre C; Nieuwenhuyzen M; Gonzalez MA; Grimm H
    J Phys Chem B; 2005 Nov; 109(46):22061-6. PubMed ID: 16853864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal signature of hydrophobic hydration dynamics.
    Qvist J; Halle B
    J Am Chem Soc; 2008 Aug; 130(31):10345-53. PubMed ID: 18624406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical transition of water in the grooves of DNA duplex at low temperature.
    Biswal D; Jana B; Pal S; Bagchi B
    J Phys Chem B; 2009 Apr; 113(13):4394-9. PubMed ID: 19267491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl group dynamics in glassy, polycrystalline, and liquid coenzyme Q10 studied by quasielastic neutron scattering.
    Smuda C; Busch S; Wagner B; Unruh T
    J Chem Phys; 2008 Aug; 129(7):074507. PubMed ID: 19044783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of a protein and its surrounding environment: a quasielastic neutron scattering study of myoglobin in water and glycerol mixtures.
    Jansson H; Kargl F; Fernandez-Alonso F; Swenson J
    J Chem Phys; 2009 May; 130(20):205101. PubMed ID: 19485482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between solvent and protein dynamics as studied by dielectric spectroscopy.
    Jansson H; Bergman R; Swenson J
    J Phys Chem B; 2005 Dec; 109(50):24134-41. PubMed ID: 16375405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasielastic neutron scattering investigation of motion of water molecules in n-propyl alcohol-water mixture.
    Nakada M; Maruyama K; Yamamuro O; Misawa M
    J Chem Phys; 2009 Feb; 130(7):074503. PubMed ID: 19239298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.